当前位置: X-MOL 学术RACSAM › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A linear preserver problem on maps which are triple derivable at orthogonal pairs
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas ( IF 2.9 ) Pub Date : 2021-06-17 , DOI: 10.1007/s13398-021-01082-8
Ahlem Ben Ali Essaleh , Antonio M. Peralta

A linear mapping T on a JB\(^*\)-triple E is called triple derivable at orthogonal pairs if for every \(a,b,c\in E\) with \(a\perp b\) we have

$$\begin{aligned} 0 = \{T(a), b,c\} + \{a,T(b),c\}+\{a,b,T(c)\}. \end{aligned}$$

We prove that for each bounded linear mapping T on a JB\(^*\)-algebra A the following assertions are equivalent:

(a):

T is triple derivable at zero;

(b):

T is triple derivable at orthogonal elements;

(c):

There exists a Jordan \(^*\)-derivation \(D:A\rightarrow A^{**}\), a central element \(\xi \in A^{**}_{sa},\) and an anti-symmetric element \(\eta \) in the multiplier algebra of A, such that

$$\begin{aligned} T(a) = D(a) + \xi \circ a + \eta \circ a, \hbox { for all } a\in A; \end{aligned}$$
(d):

There exist a triple derivation \(\delta : A\rightarrow A^{**}\) and a symmetric element S in the centroid of \(A^{**}\) such that \(T= \delta +S\).

The result is new even in the case of C\(^*\)-algebras. We next establish a new characterization of those linear maps on a JBW\(^*\)-triple which are triple derivations in terms of a good local behavior on Peirce 2-subspaces. We also prove that assuming some extra conditions on a JBW\(^*\)-triple M, the following statements are equivalent for each bounded linear mapping T on M:

(a):

T is triple derivable at orthogonal pairs;

(b):

There exists a triple derivation \(\delta : M\rightarrow M\) and an operator S in the centroid of M such that \(T = \delta + S\).



中文翻译:

在正交对处三重可推导的地图上的线性保护器问题

JB \(^*\) -triple E上的线性映射T称为三重可在正交对上可推导,如果对于每个\(a,b,c\in E\)\(a\perp b\)我们有

$$\begin{aligned} 0 = \{T(a), b,c\} + \{a,T(b),c\}+\{a,b,T(c)\}。\end{对齐}$$

我们证明,对于JB \(^*\) -代数A上的每个有界线性映射T,以下断言是等效的:

(一种):

T是可在零处三重推导的;

(二):

T在正交元素处是三重可推导的;

(C):

存在一个 Jordan \(^*\) -派生\(D:A\rightarrow A^{**}\),一个中心元素\(\xi \in A^{**}_{sa},\)A的乘数代数中的反对称元素\(\eta \),使得

$$\begin{aligned} T(a) = D(a) + \xi \circ a + \eta \circ a, \hbox { for all } a\in A; \end{对齐}$$
(四):

存在三重推导\(\增量:A \ RIGHTARROW甲^ {**} \)和对称元件š中的质心\(A ^ {**} \) ,使得\(T = \增量+ S \)

即使在 C \(^*\) -代数的情况下,结果也是新的。我们接下来在JBW \(^*\) -triple上建立这些线性映射的新特征,这些线性映射是根据 Peirce 2-子空间上的良好局部行为的三重推导。我们还证明,假设JBW \(^*\) -triple M上的一些额外条件,以下语句对于M上的每个有界线性映射T是等效的:

(一种):

T在正交对上是三重可推导的;

(二):

存在三重推导\(\增量:M \ RIGHTARROW中号\)和操作者小号中的质心中号,使得\(T = \增量+ S \)

更新日期:2021-06-18
down
wechat
bug