当前位置: X-MOL 学术Comput. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced computational homogenization techniques for modelling size effects in polymer composites
Computational Mechanics ( IF 4.1 ) Pub Date : 2021-06-18 , DOI: 10.1007/s00466-021-02037-x
Paras Kumar , Paul Steinmann , Julia Mergheim

Several experimental investigations corroborate nanosized inclusions as being much more efficient reinforcements for strengthening polymers as compared to their microsized counterparts. The inadequacy of the standard first-order computational homogenization scheme, by virtue of lack of the requisite length scale to model such size effects, necessitates enhancements to the standard scheme. In this work, a thorough assessment of one such extension based on the idea of interface energetics is conducted. Systematic numerical experimentation and analysis demonstrate the limitation of the aforementioned approach in modeling mechanical behavior of composite materials where the filler material is much stiffer than the matrix. An alternative approach based on the idea of continuously graded interphases is introduced. Comprehensive evaluation of this technique by means of representative numerical examples reveals it to be the appropriate one for modeling nano-composite materials with different filler-matrix stiffness combinations.



中文翻译:

用于模拟聚合物复合材料中尺寸效应的增强计算均质化技术

几项实验研究证实,与微米尺寸的对应物相比,纳米尺寸的夹杂物是更有效的增强聚合物的增强材料。由于缺乏必要的长度尺度来模拟这种尺寸效应,标准一阶计算均质化方案的不足之处需要对标准方案进行改进。在这项工作中,基于界面能量学的思想对一个这样的扩展进行了彻底的评估。系统的数值实验和分析证明了上述方法在对复合材料的力学行为进行建模时的局限性,其中填充材料比基体硬得多。基于连续分级相间思想的替代方法介绍。通过具有代表性的数值示例对该技术的综合评估表明,它是模拟具有不同填料-基质刚度组合的纳米复合材料的合适方法。

更新日期:2021-06-18
down
wechat
bug