当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrastrong photon-to-magnon coupling in multilayered heterostructures involving superconducting coherence via ferromagnetic layers
Science Advances ( IF 13.6 ) Pub Date : 2021-06-18 , DOI: 10.1126/sciadv.abe8638
Igor A Golovchanskiy 1, 2 , Nikolay N Abramov 2 , Vasily S Stolyarov 1, 3 , Martin Weides 4 , Valery V Ryazanov 2, 5 , Alexander A Golubov 1, 6 , Alexey V Ustinov 2, 7, 8 , Mikhail Yu Kupriyanov 1, 9
Affiliation  

The critical step for future quantum industry demands realization of efficient information exchange between different-platform hybrid systems that can harvest advantages of distinct platforms. The major restraining factor for the progress in certain hybrids is weak coupling strength between the elemental particles. In particular, this restriction impedes a promising field of hybrid magnonics. In this work, we propose an approach for realization of on-chip hybrid magnonic systems with unprecedentedly strong coupling parameters. The approach is based on multilayered microstructures containing superconducting, insulating, and ferromagnetic layers with modified photon phase velocities and magnon eigenfrequencies. The enhanced coupling strength is provided by the radically reduced photon mode volume. Study of the microscopic mechanism of the photon-to-magnon coupling evidences formation of the long-range superconducting coherence via thick strong ferromagnetic layers in superconductor/ferromagnet/superconductor trilayer in the presence of magnetization precession. This discovery offers new opportunities in microwave superconducting spintronics for quantum technologies.



中文翻译:

涉及通过铁磁层超导相干的多层异质结构中的超强光子到磁振子耦合

未来量子产业的关键一步,需要实现不同平台混合系统之间的高效信息交换,以获取不同平台的优势。某些杂化的主要制约因素是元素粒子之间的弱耦合强度。特别是,这种限制阻碍了混合磁子学的有前途的领域。在这项工作中,我们提出了一种实现具有前所未有的强耦合参数的片上混合磁系统的方法。该方法基于多层微结构,其中包含具有修改过的光子相速度和磁振子本征频率的超导、绝缘和铁磁层。增强的耦合强度是由从根本上减少的光子模式体积提供的。对光子到磁子耦合的微观机制的研究表明,在存在磁化进动的情况下,通过超导体/铁磁体/超导体三层中厚的强铁磁层形成长程超导相干性。这一发现为量子技术的微波超导自旋电子学提供了新的机会。

更新日期:2021-06-18
down
wechat
bug