当前位置: X-MOL 学术Energy Build. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Empirical validation of a multizone building model coupled with an air flow network under complex realistic situations
Energy and Buildings ( IF 6.7 ) Pub Date : 2021-06-16 , DOI: 10.1016/j.enbuild.2021.111197
Pablo Eguía-Oller , Sandra Martínez-Mariño , Enrique Granada-Álvarez , Lara Febrero-Garrido

Building energy simulation (BES) assesses the energetic and thermal behaviour of buildings and can be used for the evaluation of energy conservation measures (ECMs). However, building modelling under realistic conditions can be challenging for simulation programs. The aim of this work is to test whether a multizone building model developed with a simulation tool can handle the complex situations of an in-use building. Monitoring data from the Twin Houses empirical validation experiment of the International Energy Agency, Energy in Buildings and Communities (IEA EBC) Annex 71 is used for that purpose. The multizone building model is developed with the energy simulation software TRNSYS coupled with an air flow network in TRNFLOW. The innovative aspect of this work lies in the validation of a combined multizone building model under stochastic occupancy gains, taking into account room-wise heating profiles, ventilation, and interior air flow currents due to window and door operation. The results of a coheating test showed that the errors in the simulated heating power for the whole house are a coefficient of variation of the root mean square error (CV(RMSE)) of 12.72% and a normalised mean bias error (NMBE) of -8.35%. Nevertheless, more difficulties were found in separately predicting the heating power of each individual room. However, the combined multizone air flow model was able to predict indoor temperatures in all rooms with root mean square error (RMSE) and mean absolute error (MAE) values of less than 1 °C.



中文翻译:

复杂现实情况下多区域建筑模型与气流网络的实证验证

建筑能源模拟 (BES) 评估建筑物的能量和热行为,可用于评估节能措施 (ECM)。然而,在现实条件下建立建模对于仿真程序来说可能具有挑战性。这项工作的目的是测试使用仿真工具开发的多区域建筑模型是否可以处理在用建筑的复杂情况。来自国际能源署、建筑和社区能源 (IEA EBC) 附件 71 的双屋实证验证实验的监测数据用于此目的。多区建筑模型是使用能源模拟软件 TRNSYS 与 TRNFLOW 中的气流网络结合开发的。这项工作的创新之处在于在随机入住率增加下验证组合多区域建筑模型,同时考虑到由于门窗操作而导致的房间加热剖面、通风和室内气流。共同加热测试的结果表明,整个房屋的模拟加热功率的误差是均方根误差 (CV(RMSE)) 的变异系数为 12.72%,归一化平均偏差误差 (NMBE) 为 - 8.35%。然而,在单独预测每个房间的加热功率时发现了更多的困难。然而,组合的多区域气流模型能够以小于 1°C 的均方根误差 (RMSE) 和平均绝对误差 (MAE) 值预测所有房间的室内温度。由于窗户和门的操作,通风和室内气流。共同加热测试的结果表明,整个房屋的模拟加热功率的误差是均方根误差 (CV(RMSE)) 的变异系数为 12.72%,归一化平均偏差误差 (NMBE) 为 - 8.35%。然而,在单独预测每个房间的加热功率时发现了更多的困难。然而,组合的多区域气流模型能够以小于 1°C 的均方根误差 (RMSE) 和平均绝对误差 (MAE) 值预测所有房间的室内温度。由于窗户和门的操作,通风和室内气流。共同加热测试的结果表明,整个房屋的模拟加热功率的误差是均方根误差 (CV(RMSE)) 的变异系数为 12.72%,归一化平均偏差误差 (NMBE) 为 - 8.35%。然而,在单独预测每个房间的加热功率时发现了更多的困难。然而,组合的多区域气流模型能够以小于 1°C 的均方根误差 (RMSE) 和平均绝对误差 (MAE) 值预测所有房间的室内温度。共同加热测试的结果表明,整个房屋的模拟加热功率的误差是均方根误差 (CV(RMSE)) 的变异系数为 12.72%,归一化平均偏差误差 (NMBE) 为 - 8.35%。然而,在单独预测每个房间的加热功率时发现了更多的困难。然而,组合的多区域气流模型能够以小于 1°C 的均方根误差 (RMSE) 和平均绝对误差 (MAE) 值预测所有房间的室内温度。共同加热测试的结果表明,整个房屋的模拟加热功率中的误差是均方根误差 (CV(RMSE)) 的变异系数为 12.72%,归一化平均偏差误差 (NMBE) 为 - 8.35%。然而,在单独预测每个房间的加热功率时发现了更多的困难。然而,组合的多区域气流模型能够以小于 1°C 的均方根误差 (RMSE) 和平均绝对误差 (MAE) 值预测所有房间的室内温度。

更新日期:2021-06-17
down
wechat
bug