当前位置: X-MOL 学术J. Elast. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Hybrid Microstructural-Continuum Multiscale Approach for Modeling Hyperelastic Fibrous Soft Tissue
Journal of Elasticity ( IF 2 ) Pub Date : 2021-06-16 , DOI: 10.1007/s10659-021-09843-7
Maryam Nikpasand 1 , Ryan R Mahutga 2 , Lauren M Bersie-Larson 2 , Elizabeth Gacek 2 , Victor H Barocas 2
Affiliation  

The heterogeneous, nonlinear, anisotropic material behavior of biological tissues makes precise definition of an accurate constitutive model difficult. One possible solution to this issue would be to define microstructural elements and perform fully coupled multiscale simulation. However, for complex geometries and loading scenarios, the computational costs of such simulations can be prohibitive. Ideally then, we should seek a method that contains microstructural detail, but leverages the speed of classical continuum-based finite-element (FE) modeling. In this work, we demonstrate the use of the Holzapfel-Gasser-Ogden (HGO) model (Holzapfel et al. in J. Elast. 61:1–48, 2000; Gasser et al. in J. R. Soc. Interface 3(6):15–35, 2006) to fit the behavior of microstructural network models. We show that Delaunay microstructural networks can be fit to the HGO strain energy function by calculating fiber network strain energy and average fiber stretch ratio. We then use the HGO constitutive model in a FE framework to improve the speed of our hybrid model, and demonstrate that this method, combined with a material property update scheme, can match a full multiscale simulation. This method gives us flexibility in defining complex FE simulations that would be impossible, or at least prohibitively time consuming, in multiscale simulation, while still accounting for microstructural heterogeneity.



中文翻译:

一种用于模拟超弹性纤维软组织的混合微结构-连续体多尺度方法

生物组织的异质、非线性、各向异性材料行为使得精确定义本构模型变得困难。该问题的一种可能解决方案是定义微观结构元素并执行完全耦合的多尺度模拟。然而,对于复杂的几何形状和加载场景,此类模拟的计算成本可能会令人望而却步。那么理想情况下,我们应该寻求一种包含微观结构细节的方法,但要利用经典的基于连续介质的有限元 (FE) 建模的速度。在这项工作中,我们演示了 Holzapfel-Gasser-Ogden (HGO) 模型的使用(Holzapfel 等人在 J. Elast. 61:1–48, 2000 中;Gasser 等人在 JR Soc. Interface 3(6) 中:15–35, 2006) 以适应微结构网络模型的行为。我们通过计算纤维网络应变能和平均纤维拉伸比,表明 Delaunay 微结构网络可以拟合 HGO 应变能函数。然后,我们在有限元框架中使用 HGO 本构模型来提高混合模型的速度,并证明该方法与材料属性更新方案相结合,可以匹配完整的多尺度模拟。这种方法使我们能够灵活地定义复杂的 FE 模拟,这在多尺度模拟中是不可能的,或者至少非常耗时,同时仍然考虑微观结构的异质性。结合材料属性更新方案,可以匹配完整的多尺度模拟。这种方法使我们能够灵活地定义复杂的 FE 模拟,这在多尺度模拟中是不可能的,或者至少非常耗时,同时仍然考虑微观结构的异质性。结合材料属性更新方案,可以匹配完整的多尺度模拟。这种方法使我们能够灵活地定义复杂的 FE 模拟,这在多尺度模拟中是不可能的,或者至少非常耗时,同时仍然考虑微观结构的异质性。

更新日期:2021-06-17
down
wechat
bug