当前位置: X-MOL 学术Opt. Mater. Express › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Topologically optimized periodic resonant nanostructures for extraordinary optical transmission [Invited]
Optical Materials Express ( IF 2.8 ) Pub Date : 2021-06-16 , DOI: 10.1364/ome.423252
Yu Lin 1 , Yeming Han 1 , Chao Song 2 , Yongbo Deng 1
Affiliation  

This paper presents the inverse design of resonant nanostructures for extraordinary optical transmission of periodic metallic slits, where the topology optimization approach is utilized to implement the inverse design procedure and find the geometrical configurations of the nanostructures. By using the inverse design method, the subwavelength-sized resonant nanostructures, localized at the inlet and outlet sides of the periodic metallic slits, are derived with transmission peaks at the prescribed incident wavelengths. The transmissivity is enhanced by effective excitation and guidance of surface plasmon polariton at the inlet side of the slits, the coherent resonance of surface plasmon polariton inside the slits, and radiation of the photonic energy at the outlet side of the slits. The transmission peaks of the periodic metallic slits, with inversely designed resonant nanostructures, are raised along with the red shift of the incident wavelength. The position of the transmission peak of periodic metallic slits can be controlled and localized at the desired frequency, by specifying the incident wave with the wavelength corresponding to the desired frequency preset in the inverse design procedure. By maximizing the minimum transmissivity of the periodic metallic slits with incident wavelengths in a prescribed wavelength range, the extraordinary optical transmission bandwidth can be enlarged, and the sensitivity of transmissivity to wavelength can be decreased equivalently.

中文翻译:

拓扑优化的周期性共振纳米结构用于非凡的光传输 [邀请]

本文介绍了谐振纳米结构的逆向设计,用于周期性金属狭缝的非凡光学传输,其中利用拓扑优化方法来实施逆向设计程序并找到纳米结构的几何配置。通过使用逆向设计方法,亚波长尺寸的谐振纳米结构位于周期性金属狭缝的入口和出口侧,在规定的入射波长处具有透射峰。通过狭缝入口侧表面等离子体极化子的有效激发和引导、狭缝内部表面等离子体极化子的相干共振以及狭缝出口侧光子能量的辐射,提高了透射率。周期性金属狭缝的透射峰,具有反向设计的谐振纳米结构,随着入射波长的红移而升高。通过指定具有与逆向设计程序中预设的所需频率相对应的波长的入射波,可以控制周期性金属狭缝的透射峰值的位置并将其定位在所需的频率上。通过使入射波长在规定波长范围内的周期性金属狭缝的最小透射率最大化,可以扩大非常光传输带宽,同时降低透射率对波长的灵敏度。通过指定具有与逆向设计程序中预设的所需频率相对应的波长的入射波,可以控制周期性金属狭缝的透射峰值的位置并将其定位在所需的频率上。通过使入射波长在规定波长范围内的周期性金属狭缝的最小透射率最大化,可以扩大非常光传输带宽,同时降低透射率对波长的灵敏度。通过指定具有与逆向设计程序中预设的所需频率相对应的波长的入射波,可以控制周期性金属狭缝的透射峰值的位置并将其定位在所需的频率上。通过使入射波长在规定波长范围内的周期性金属狭缝的最小透射率最大化,可以扩大非常光传输带宽,同时降低透射率对波长的灵敏度。
更新日期:2021-07-02
down
wechat
bug