当前位置: X-MOL 学术Phys. Rev. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiple-qubit controlled unitary quantum gate for Rydberg atoms using shortcut to adiabaticity and optimized geometric quantum operations
Physical Review A ( IF 2.9 ) Pub Date : 2021-06-15 , DOI: 10.1103/physreva.103.062607
Meng Li , F.-Q. Guo , Z. Jin , L.-L. Yan , E.-J. Liang , S.-L. Su

Multiple-qubit quantum logic gates are an important element in the implementation of quantum computers. The direct construction of multiple-qubit quantum logic gates in an efficient way has important values compared to the construction of multiple-qubit gates using a series of two-qubit and single-qubit gates. We propose a scheme to construct a multiple-qubit CkU gate (k denotes the number of control qubits and U means the arbitrary universal operation performed on the target qubit) in a neutral atom platform through the Rydberg blockade effect by successively exciting them to Rydberg states. This scheme takes advantage of the shortcut to adiabaticity of inverse engineering, geometric quantum operations, as well as optimized control theory. The geometric quantum computation considered in this manuscript guarantees the robustness to operational errors. Meanwhile, inverse engineering-based shortcut to adiabaticity provides a further advantage in terms of the speed of the system evolution compared to adiabatic processes. An additional feature of our multiple-qubit quantum logic gate is that arbitrary operation on the target atom can be realized by adjusting the amplitude and phase of the laser fields. Numerical simulation of the master equation based on the full Hamiltonian demonstrates the high fidelity of the proposed scheme and its robustness to operational errors and spontaneous emission.

中文翻译:

使用绝热捷径和优化几何量子运算的里德堡原子的多量子位控制单一量子门

多量子位量子逻辑门是实现量子计算机的重要元素。与使用一系列双量子位和单量子位门构建多量子位门相比,以有效方式直接构建多量子位量子逻辑门具有重要价值。我们提出了一种构建多量子比特的方案C 门 (表示控制量子位的数量,U 表示通过里德堡阻塞效应在中性原子平台中对目标量子位执行的任意通用操作,通过连续将它们激发到里德堡态。该方案利用了逆向工程、几何量子运算以及优化控制理论的绝热捷径。本手稿中考虑的几何量子计算保证了对操作错误的鲁棒性。同时,与绝热过程相比,基于逆向工程的绝热捷径在系统演化速度方面提供了进一步的优势。我们的多量子位量子逻辑门的另一个特点是可以通过调整激光场的幅度和相位来实现对目标原子的任意操作。
更新日期:2021-06-15
down
wechat
bug