当前位置: X-MOL 学术Earth Planet. Sci. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The hydrology and climate of Mars during the sedimentary infilling of Gale crater
Earth and Planetary Science Letters ( IF 5.3 ) Pub Date : 2021-06-15 , DOI: 10.1016/j.epsl.2021.117032
David G. Horvath , Jeffrey C. Andrews-Hanna

Gale crater's central sedimentary mound (Aeolis Mons or, informally, Mount Sharp) preserves one of the best records of early Martian climatic, hydrologic, and sedimentary history. Mount Sharp's sediment sequence is broadly consistent with a transition from wetter surface conditions with lakes and fluvial activity, to groundwater influenced sediment cementation under dryer conditions, to a period of anhydrous sediment accumulation and erosion dominated by aeolian processes. However, surface conditions alone do not provide a direct constraint on the climate evolution. We use models of the hydrological evolution of the crater, evaluated against constraints on the local depositional environment from both satellite observations and ground-based observations by the Mars Science Laboratory on the Curiosity rover to shed light on the evolution of the climate at Gale crater. The results show that the local depositional environment is influenced by both climate and the state of crater infill. The overall trend in the stratigraphic sequence, recording a transition from wet to dry environments within Gale crater, could have formed under a dominantly arid climate with changes in sediment properties exposed along the edge of Mount Sharp resulting from both lateral and vertical changes in depositional environment due to a decrease in the accommodation space and changing basin geometry as the crater filled with sediment. Alternatively, the sedimentary sequence within Gale crater could be explained by a changing climate, with lake formation during the waning period of a wetter epoch followed by secular drying to account for the observed phyllosilicate to sulfate transition. In either scenario, short-term climate changes are required to explain local changes in facies and mineralogy. A later shift to much dryer conditions is required to explain the aeolian erosion of the mound, followed by renewed arid to semiarid conditions to explain the later-stage lakes. Hydrological modeling constrains the early climate at Gale crater to have been between arid and semiarid, largely consistent with geomorphological and geochemical constraints on the climate at the Noachian–Hesperian boundary.



中文翻译:

盖尔陨石坑沉积充填过程中火星的水文和气候

盖尔陨石坑的中央沉积丘(Aeolis Mons 或非正式地称为夏普山)保存了早期火星气候、水文和沉积历史的最佳记录之一。夏普山的沉积物序列与从具有湖泊和河流活动的潮湿地表条件到干燥条件下受地下水影响的沉积物胶结,再到以风积过程为主的无水沉积物积累和侵蚀时期的转变大致一致。然而,地表条件本身并不能直接限制气候演变。我们使用火山口水文演变的模型,火星科学实验室对好奇号火星车的卫星观测和地面观测对当地沉积环境的限制进行了评估,以揭示盖尔陨石坑的气候演变。结果表明,当地的沉积环境受气候和火山口填充状态的影响。地层序列的总体趋势,记录了盖尔陨石坑内从湿环境到干环境的转变,可能是在以干旱气候为主的气候下形成的,由于沉积环境的横向和垂直变化,夏普山边缘暴露的沉积物性质发生了变化由于容纳空间的减少和盆地几何形状的变化,因为火山口充满了沉积物。或者,盖尔陨石坑内的沉积序列可以用气候变化来解释,在湿润时代的衰落期形成湖泊,然后是长期干燥,以解释观察到的页硅酸盐到硫酸盐的转变。在任何一种情况下,都需要短期气候变化来解释相和矿物学的局部变化。需要稍后转向更干燥的条件来解释土丘的风沙侵蚀,然后需要重新干旱到半干旱的条件来解释后期湖泊。水文模型将盖尔陨石坑的早期气候限制在干旱和半干旱之间,这与 Noachian-Hesperian 边界对气候的地貌和地球化学限制基本一致。在湿润时代的衰落期形成湖泊,然后是长期干燥,以解释观察到的页硅酸盐到硫酸盐的转变。在任何一种情况下,都需要短期气候变化来解释相和矿物学的局部变化。需要稍后转向更干燥的条件来解释土丘的风蚀,然后需要重新干旱到半干旱的条件来解释后期湖泊。水文模型将盖尔陨石坑的早期气候限制在干旱和半干旱之间,这与 Noachian-Hesperian 边界对气候的地貌和地球化学限制基本一致。在湿润时代的衰落期间形成湖泊,然后是长期干燥,以解释观察到的页硅酸盐到硫酸盐的转变。在任何一种情况下,都需要短期气候变化来解释相和矿物学的局部变化。需要稍后转向更干燥的条件来解释土丘的风蚀,然后需要重新干旱到半干旱的条件来解释后期湖泊。水文模型将盖尔陨石坑的早期气候限制在干旱和半干旱之间,这与 Noachian-Hesperian 边界对气候的地貌和地球化学限制基本一致。需要短期气候变化来解释相和矿物学的局部变化。需要稍后转向更干燥的条件来解释土丘的风蚀,然后需要重新干旱到半干旱的条件来解释后期湖泊。水文模型将盖尔陨石坑的早期气候限制在干旱和半干旱之间,这与 Noachian-Hesperian 边界气候的地貌和地球化学限制基本一致。需要短期气候变化来解释相和矿物学的局部变化。需要稍后转向更干燥的条件来解释土丘的风蚀,然后需要重新干旱到半干旱的条件来解释后期湖泊。水文模型将盖尔陨石坑的早期气候限制在干旱和半干旱之间,这与 Noachian-Hesperian 边界对气候的地貌和地球化学限制基本一致。

更新日期:2021-06-15
down
wechat
bug