当前位置: X-MOL 学术Water › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonlinear Isotherm and Kinetic Modeling of Cu(II) and Pb(II) Uptake from Water by MnFe2O4/Chitosan Nanoadsorbents
Water ( IF 3.4 ) Pub Date : 2021-06-14 , DOI: 10.3390/w13121662
Manny Anthony Taguba , Dennis Ong , Benny Marie Ensano , Chi-Chuan Kan , Nurak Grisdanurak , Jurng-Jae Yee , Mark Daniel de Luna

Researchers are in continuous search of better strategies to minimize, if not prevent, the anthropogenic release of toxic heavy metals, such as Cu(II) and Pb(II), into drinking water resources and the natural environment. Herein, we report for the first time the low-temperature combustion synthesis of magnetic chitosan-manganese ferrite in the absence of toxic cross-linking agents and its removal of Cu(II) and Pb(II) from single-component metal solutions. The nonlinear Langmuir model best described the isotherm data, while the nonlinear pseudo-second order model best described the kinetic data, signifying monolayer Cu(II) or Pb(II) adsorption and chemisorption as the rate-determining step, respectively. Adsorption capacities by magnetic chitosan-manganese ferrite obtained for both metals were consistently higher than those by manganese ferrite, indicating that chitosan enhanced the performance of the magnetic adsorbent. The maximum adsorption capacities of magnetic chitosan-manganese ferrite for Cu(II) and Pb(II) were 14.86 and 15.36 mg g−1, while that of manganese ferrite were 2.59 and 13.52 mg g−1, respectively. Moreover, the adsorbents showed superior binding affinity and sorption for Pb(II) than Cu(II) owing to the stronger ability of the former to form inner-sphere complexes with manganese ferrite and magnetic chitosan-manganese ferrite. Finally, thermodynamic studies revealed that the uptake of either Pb(II) or Cu(II) by magnetic chitosan-manganese ferrite was spontaneous and endothermic. The as-prepared adsorbent was characterized for morphology, elemental composition, surface functional sites, and particle size using scanning electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, and dynamic light scattering technique, respectively.

中文翻译:

MnFe2O4/壳聚糖纳米吸附剂从水中吸收Cu(II)和Pb(II)的非线性等温线和动力学模型

研究人员正在不断寻找更好的策略,以最大限度地减少(如果不能防止)有毒重金属(如 Cu(II) 和 Pb(II))的人为释放到饮用水资源和自然环境中。在此,我们首次报道了在没有有毒交联剂的情况下低温燃烧合成磁性壳聚糖-锰铁氧体及其从单组分金属溶液中去除 Cu(II) 和 Pb(II)。非线性 Langmuir 模型最好地描述了等温线数据,而非线性伪二级模型最好地描述了动力学数据,分别表示单层 Cu(II) 或 Pb(II) 吸附和化学吸附作为速率决定步骤。磁性壳聚糖-锰铁氧体对两种金属的吸附能力始终高于锰铁氧体,表明壳聚糖增强了磁性吸附剂的性能。磁性壳聚糖-锰铁氧体对Cu(II)和Pb(II)的最大吸附容量分别为14.86和15.36 mg/g-1,而锰铁氧体的分别为 2.59 和 13.52 mg g -1。此外,由于前者与锰铁氧体和磁性壳聚糖-锰铁氧体形成内球配合物的能力更强,吸附剂对 Pb(II) 的结合亲和力和吸附能力优于 Cu(II)。最后,热力学研究表明磁性壳聚糖-锰铁氧体对 Pb(II) 或 Cu(II) 的吸收是自发和吸热的。分别使用扫描电子显微镜、能量色散光谱、傅里叶变换红外光谱和动态光散射技术表征所制备的吸附剂的形态、元素组成、表面功能位点和粒径。
更新日期:2021-06-14
down
wechat
bug