当前位置: X-MOL 学术Int. J. Precis. Eng. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rapid 3D Shape Measurement using Sine Pattern in Phase-Shifting Projection Method
International Journal of Precision Engineering and Manufacturing ( IF 1.9 ) Pub Date : 2021-06-14 , DOI: 10.1007/s12541-021-00545-7
Seung-Sin Kim , Byeong-Mook Chung

The accuracy and speed of measurement are very important in a 3D measurement system using a DLP projector and a camera. In order to increase the accuracy, the measurement area is divided as small as possible by using a gray code. When the width of the pattern becomes narrower, the square pattern appears as a sine wave, making further division difficult. The sine wave shown here can be subdivided into a range of 2π using the phase-shifting method. This method is the most widely used measurement method called the SBM so far. It is a simple method to increase the accuracy by using gray codes with a short pitch, but there is a problem that the measuring time is lengthened due to an increase in the number of camera shots. In order to reduce the number, it is necessary to use fewer gray codes by using a long-period sine wave in the phase-shifting method. However, if the sine pattern is directly projected, an ideal sine wave cannot be obtained due to the gamma effect, so it is necessary to appropriately modify the fringe pattern and redesign. In this paper, we propose a method to compensate for the gamma effect in a sine pattern and show that an ideal sine wave can be generated even with a long periodic phase-shifting method. When the measuring speed and accuracy of the proposed method were compared with the SBM, it was confirmed through experiments that the measuring speed was increased by 25% at the same accuracy and the accuracy of the reference plane was improved by 7 times at the same speed.



中文翻译:

使用相移投影法中的正弦图案进行快速 3D 形状测量

在使用 DLP 投影仪和相机的 3D 测量系统中,测量的准确性和速度非常重要。为了提高精度,使用格雷码将测量区域划分得尽可能小。当图案的宽度变窄时,方形图案显示为正弦波,使进一步分割变得困难。此处显示的正弦波可以使用相移方法细分为 2π 的范围。这种方法是迄今为止使用最广泛的测量方法,称为 SBM。通过使用间距较短的格雷码来提高精度是一种简单的方法,但存在由于相机拍摄次数增加而导致测量时间延长的问题。为了减少数量,需要通过在相移方法中使用长周期正弦波来使用更少的格雷码。但是,如果直接投影正弦图案,由于伽马效应,无法获得理想的正弦波,因此需要适当修改条纹图案并重新设计。在本文中,我们提出了一种以正弦模式补偿伽马效应的方法,并表明即使使用长周期相移方法也可以产生理想的正弦波。将所提方法的测量速度和精度与SBM进行对比,通过实验证实,在相同精度下,测量速度提高25%,基准面精度提高7倍。 . 我们提出了一种以正弦模式补偿伽马效应的方法,并表明即使使用长周期相移方法也可以产生理想的正弦波。将所提方法的测量速度和精度与SBM进行对比,通过实验证实,在相同精度下,测量速度提高25%,基准面精度提高7倍。 . 我们提出了一种以正弦模式补偿伽马效应的方法,并表明即使使用长周期相移方法也可以产生理想的正弦波。将所提方法的测量速度和精度与SBM进行对比,通过实验证实,在相同精度下,测量速度提高25%,基准面精度提高7倍。 .

更新日期:2021-06-14
down
wechat
bug