当前位置: X-MOL 学术Nucl. Mater. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal-hydraulic modelling and analysis of ITER tungsten divertor monoblock
Nuclear Materials and Energy ( IF 2.6 ) Pub Date : 2021-06-14 , DOI: 10.1016/j.nme.2021.101035
Salah El-Din El-Morshedy

The divertor is a fundamental component of fusion power plants, being primarily responsible for power exhaust and impurity removal via guided plasma exhaust. Due to its position and functions, the divertor has to sustain very high heat flux arising from the plasma (up to 20 MW/m2), while experiencing an intense nuclear deposited power, which could jeopardize its structure and limit its lifetime. Therefore, attention has to be paid to the thermal–hydraulic design of its cooling system. In this work a mathematical model has been developed to investigate the steady state and transient thermal–hydraulic performance of ITER tungsten divertor monoblock. The model predicts the thermal response of the divertor structural materials and coolant tube. The coolant tube is divided into specified axial regions and the divertor plate is divided into specified radial zones, and then a two-dimensional heat conduction calculation is performed to predict the temperature distribution for both steady and transient states. A two-dimensional numerical finite difference technique is adapted in Cartesian coordinate system where the implicit scheme is used for transient calculation. The model also accounts for the melting, vaporization, and re-solidification of the upper layer of the divertor facing plasma. The selected heat transfer correlations cover all possible operating conditions of ITER under both normal and off-normal situations. The model is verified against a previous calculation in the literature for DEMO divertor at an incident surface heat flux of 10 MW/m2. The model is then used to predict the steady state thermal behaviour of the divertor under incident surface heat fluxes ranges from 2 to 20 MW/m2 for a bare cooling tube and cooling tube with swirl-tape insertion. It calculates the maximum tube surface heat flux and the minimum critical heat flux ratio for all cases as well. The model is also used to simulate the divertor materials response subjected to high heat flux during a vertical displacement event (VDE) where 60 MJ/m2 plasma energy is deposited over 500 ms.



中文翻译:

ITER钨偏滤器整体的热工水力建模与分析

偏滤器是聚变发电厂的基本组成部分,主要负责通过引导等离子排气进行功率排放和杂质去除。由于其位置和功能,偏滤器必须承受等离子体产生的非常高的热通量(高达 20 MW/m 2),同时经历强烈的核沉积能量,这可能会危及其结构并限制其寿命。因此,必须注意其冷却系统的热工水力设计。在这项工作中,已经开发了一个数学模型来研究 ITER 钨偏滤器整体的稳态和瞬态热工水力性能。该模型预测偏滤器结构材料和冷却剂管的热响应。将冷却剂管划分为指定的轴向区域,将分流板划分为指定的径向区域,然后进行二维热传导计算以预测稳态和瞬态的温度分布。在笛卡尔坐标系中采用了二维数值有限差分技术,其中隐式方案用于瞬态计算。该模型还考虑了面向等离子体的偏滤器上层的熔化、汽化和重新凝固。选定的传热相关性涵盖了 ITER 在正常和非正常情况下的所有可能运行条件。该模型已根据文献中先前计算的 DEMO 偏滤器在入射表面热通量为 10 MW/m 时进行了验证2 . 然后,该模型用于预测偏滤器在入射表面热通量范围为 2 到 20 MW/m 2 的情况下,对于裸冷却管和带有涡流带插入的冷却管的稳态热行为。它还计算所有情况下的最大管表面热通量和最小临界热通量比。该模型还用于模拟在垂直位移事件 (VDE) 期间,偏滤器材料对高热通量的响应,其中 60 MJ/m 2等离子体能量在 500 毫秒内沉积。

更新日期:2021-06-17
down
wechat
bug