当前位置: X-MOL 学术GISci. Remote Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Precipitation structure during various phases the life cycle of precipitating cloud systems using geostationary satellite and space-based precipitation radar over Peru
GIScience & Remote Sensing ( IF 6.7 ) Pub Date : 2020-11-16 , DOI: 10.1080/15481603.2020.1843846
Shailendra Kumar 1 , Carlos Del Castillo-Velarde 1 , José Luis Flores Rojas 1 , Aldo Moya-Álvarez 1 , Daniel Martínez Castro 1 , Shweta Srivastava 2 , Yamina Silva 1
Affiliation  

ABSTRACT The life cycle of clouds consists of mainly into three phases, namely developing, mature, and dissipating phases. The information about the vertical structure of the precipitation during different phases of development will improve their representation in the cloud models. Whether specific regimes over Peru favor the formation or decay of the cloud systems and how their intensity varies during different phases of development will provide the insight into the precipitation structure over Peru. We used two satellite-based data, namely from Global Precipitation Measurement dual Precipitation Radar (GPM-DPR) and GOES (Geostationary Operational Environmental Satellite) to expose the vertical structure of precipitation during different phases of the precipitating cloud systems (PCSs). A PCS is defined using the GPM based near surface rainfall data and then GOES-based brightness temperature (BT) is used to identify a specific phase of PCS. In particular 9 hours of BT (e.g., time series of BT) data for a GPM DPR overpass is used to a specific phase of PCS. Once, all the PCSs are identified into a specific phase, their statistical properties are studied. The highest convective fraction area (~26%) and near surface rain rate (RR; 4.97 mm hr−1) are observed in developing phase of PCSs. Also, the convective fraction area and near surface RR decreases as cloud matures, and, least convective fraction area and RR (~4.11 mm hr−1) are observed in dissipating phase PCSs. The vertical structure of precipitation consists of more complex relation among different phases of PCSs. The vertical distributors of hydrometeors (e.g., radar reflectivity, RR, and DSD parameters) during various phases have different characteristics above and below the freezing height (~5 km). For example, convective precipitation has small concentration of higher sized hydrometeors below the freezing height, whereas mature has PCSs show different behavior. The total amount of water analysis shows that liquid and ice water amount varies during different phases and affect the rainfall characteristics. It is observed that precipitation characteristics during different phases are influenced by the Andes Mountain and developing phase PCSs have higher sized of hydrometeors with higher near surface RR at the north-eastern continent of Peru.

中文翻译:

秘鲁上空使用地球同步卫星和天基降水雷达的降水云系统生命周期各阶段的降水结构

摘要 云的生命周期主要包括三个阶段,即发展阶段、成熟阶段和消散阶段。有关不同发展阶段降水垂直结构的信息将改善它们在云模型中的表现。秘鲁上空的特定制度是否有利于云系统的形成或衰减,以及它们的强度在不同发展阶段如何变化,将提供对秘鲁降水结构的深入了解。我们使用了两个基于卫星的数据,即来自全球降水测量双降水雷达 (GPM-DPR) 和 GOES (地球静止运行环境卫星) 来揭示降水云系统 (PCS) 不同阶段的降水垂直结构。使用基于 GPM 的近地表降雨数据定义 PCS,然后使用基于 GOES 的亮温 (BT) 来识别 PCS 的特定阶段。特别地,用于 GPM DPR 立交桥的 9 小时 BT(例如,BT 时间序列)数据用于 PCS 的特定阶段。一旦将所有 PCS 识别到特定阶段,就会研究它们的统计特性。在 PCS 的发展阶段观察到最高对流分数区域 (~26%) 和近地表降雨率 (RR; 4.97 mm hr-1)。此外,对流部分面积和近地表 RR 随着云的成熟而减少,并且在消散阶段 PCS 中观察到对流部分面积和 RR (~4.11 mm hr-1) 最少。降水的垂直结构由 PCS 不同阶段之间更复杂的关系组成。水凝物的垂直分布器(例如,不同阶段的雷达反射率、RR 和 DSD 参数)在冻结高度(~5 公里)上下具有不同的特征。例如,对流降水在冰点高度以下具有小浓度的较大尺寸的水凝物,而成熟的 PCS 则表现出不同的行为。总水量分析表明,不同阶段液态水和冰水量不同,影响降雨特征。据观察,不同阶段的降水特征受安第斯山脉的影响,发展阶段的 PCS 在秘鲁东北部大陆具有更大尺寸的水凝物和更高的近地表 RR。对流降水在冻结高度以下具有小浓度的较大尺寸的水凝物,而成熟的 PCS 表现出不同的行为。总水量分析表明,不同阶段液态水和冰水量不同,影响降雨特征。据观察,不同阶段的降水特征受安第斯山脉的影响,发展阶段的 PCS 在秘鲁东北部大陆具有更大尺寸的水凝物和更高的近地表 RR。对流降水在冻结高度以下具有小浓度的较大尺寸的水凝物,而成熟的 PCS 表现出不同的行为。总水量分析表明,不同阶段液态水和冰水量不同,影响降雨特征。据观察,不同阶段的降水特征受安第斯山脉的影响,发展阶段的 PCS 在秘鲁东北部大陆具有更大尺寸的水凝物和更高的近地表 RR。
更新日期:2020-11-16
down
wechat
bug