当前位置: X-MOL 学术Biogeosciences › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Geographic variability in freshwater methane hydrogen isotope ratios and its implications for global isotopic source signatures
Biogeosciences ( IF 4.9 ) Pub Date : 2021-06-11 , DOI: 10.5194/bg-18-3505-2021
Peter M. J. Douglas , Emerald Stratigopoulos , Sanga Park , Dawson Phan

There is growing interest in developing spatially resolved methane (CH4) isotopic source signatures to aid in geographic source attribution of CH4 emissions. CH4 hydrogen isotope measurements (δ2H–CH4) have the potential to be a powerful tool for geographic differentiation of CH4 emissions from freshwater environments, as well as other microbial sources. This is because microbial δ2H–CH4 values are partially dependent on the δ2H of environmental water (δ2H–H2O), which exhibits large and well-characterized spatial variability globally. We have refined the existing global relationship between δ2H–CH4 and δ2H–H2O by compiling a more extensive global dataset of δ2H–CH4 from freshwater environments, including wetlands, inland waters, and rice paddies, comprising a total of 129 different sites, and compared these with measurements and estimates of δ2H–H2O, as well as δ13C-CH4 and δ13C–CO2 measurements. We found that estimates of δ2H–H2O explain approximately 42 % of the observed variation in δ2H–CH4, with a flatter slope than observed in previous studies. The inferred global δ2H–CH4 vs. δ2H–H2O regression relationship is not sensitive to using either modelled precipitation δ2H or measured δ2H–H2O as the predictor variable. The slope of the global freshwater relationship between δ2H–CH4 and δ2H–H2O is similar to observations from incubation experiments but is different from pure culture experiments. This result is consistent with previous suggestions that variation in the δ2H of acetate, controlled by environmental δ2H–H2O, is important in determining variation in δ2H–CH4. The relationship between δ2H–CH4 and δ2H–H2O leads to significant differences in the distribution of freshwater δ2H–CH4 between the northern high latitudes (60–90 N), relative to other global regions. We estimate a flux-weighted global freshwater δ2H–CH4 of 310 ± 15 ‰, which is higher than most previous estimates. Comparison with δ13C measurements of both CH4 and CO2 implies that residual δ2H–CH4 variation is the result of complex interactions between CH4 oxidation, variation in the dominant pathway of methanogenesis, and potentially other biogeochemical variables. We observe a significantly greater distribution of δ2H–CH4 values, corrected for δ2H–H2O, in inland waters relative to wetlands, and suggest this difference is caused by more prevalent CH4 oxidation in inland waters. We used the expanded freshwater CH4 isotopic dataset to calculate a bottom-up estimate of global source δ2H–CH4 and δ13C-CH4 that includes spatially resolved isotopic signatures for freshwater CH4 sources. Our bottom-up global source δ2H–CH4 estimate (278 ± 15 ‰) is higher than a previous estimate using a similar approach, as a result of the more enriched global freshwater δ2H–CH4 signature derived from our dataset. However, it is in agreement with top-down estimates of global source δ2H–CH4 based on atmospheric measurements and estimated atmospheric sink fractionations. In contrast our bottom-up global source δ13C-CH4 estimate is lower than top-down estimates, partly as a result of a lack of δ13C-CH4 data from C4-plant-dominated ecosystems. In general, we find there is a particular need for more data to constrain isotopic signatures for low-latitude microbial CH4 sources.

中文翻译:

淡水甲烷氢同位素比率的地理变异性及其对全球同位素源特征的影响

人们对开发空间分辨的甲烷 (CH 4 ) 同位素源特征以帮助 CH 4排放的地理源归属越来越感兴趣。CH 4氢同位素测量(δ 2 H–CH 4)有可能成为区分淡水环境和其他微生物来源的 CH 4排放的强大工具。这是因为微生物 δ 2 H-CH 4的值是部分地依赖于δ 2环境水的H(δ 2 H-H 2O),它在全球范围内表现出巨大且特征鲜明的空间变异性。我们通过编译来自淡水环境(包括湿地、内陆水域和稻田)的更广泛的δ 2 H–CH 4全球数据集,完善了δ 2 H–CH 4δ 2 H–H 2 O 之间现有的全球关系,包括总共 129 个不同的站点,并将这些与δ 2 H–H 2 O 以及δ 13 C-CH 4δ 13 C–CO 2 的测量值和估计值进行比较测量。我们发现δ 2 H–H 2 O 的估计值解释了观察到的δ 2 H–CH 4变化的大约 42%, 斜率比以前的研究中观察到的更平坦。推断的全球δ 2 H–CH 4δ 2 H–H 2 O 回归关系对使用模拟降水δ 2 H 或测量的δ 2 H–H 2 O 作为预测变量不敏感。δ 2 H–CH 4与全球淡水关系的斜率δ 2 H–H 2 O 与孵化实验的观察结果相似,但与纯培养实验不同。该结果与以前的建议相一致的是,在变型δ 2乙酸盐的H,受环境控制的δ 2 H-H 2 O,是在确定的变化重要δ 2 H-CH 4δ 2 H–CH 4δ 2 H–H 2 O之间的关系 导致淡水δ 2 H–CH 4分布的显着差异 相对于全球其他地区, 北部高纬度地区(60-90 N)之间。我们估计通量加权的全球淡水δ 2 H–CH 4 310  ±  15 ‰,高于大多数先前的估计值。与CH 4和 CO 2 的δ 13 C 测量值的比较表明,残留的δ 2 H–CH 4变化是 CH 4氧化、产甲烷主要途径的变化和其他潜在生物地球化学变量之间复杂相互作用的结果。我们观察到明显更大的δ分布2 H–CH 4值,经δ 2 H–H 2 O校正 ,内陆水域相对于湿地,表明这种差异是由内陆水域更普遍的 CH 4氧化引起的。我们使用扩展的淡水 CH 4同位素数据集来计算全球源δ 2 H–CH 4δ 13 C-CH 4的自下而上估计,其中包括淡水 CH 4源的空间分辨同位素特征。我们自下而上的全球源 δ 2 H–CH 4估计值 ( 278  ± 15 ‰) 高于使用类似方法的先前估计值,这是由于来自我们的数据集的更丰富的全球淡水δ 2 H–CH 4特征。然而,它与基于大气测量和估计的大气汇分馏对全球源δ 2 H–CH 4的自上而下的估计一致。相比之下,我们自下而上的全球来源δ 13 C-CH 4估计低于自上而下的估计,部分原因是缺乏来自 C 4δ 13 C-CH 4数据-植物主导的生态系统。总的来说,我们发现特别需要更多数据来约束低纬度微生物 CH 4源的同位素特征。
更新日期:2021-06-11
down
wechat
bug