当前位置: X-MOL 学术Arch. Rational Mech. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Sobolev-Type Inequality for the Curl Operator and Ground States for the Curl–Curl Equation with Critical Sobolev Exponent
Archive for Rational Mechanics and Analysis ( IF 2.5 ) Pub Date : 2021-06-10 , DOI: 10.1007/s00205-021-01684-x
Jarosław Mederski , Andrzej Szulkin

Let \(\Omega \subset \mathbb {R}^3\) be a Lipschitz domain and let \(S_\mathrm {curl}(\Omega )\) be the largest constant such that

$$\begin{aligned} \int _{\mathbb {R}^3}|\nabla \times u|^2\, \mathrm{d}x\ge S_{\mathrm {curl}}(\Omega ) \inf _{\begin{array}{c} w\in W_0^6(\mathrm {curl};\mathbb {R}^3)\\ \nabla \times w=0 \end{array}}\Big (\int _{\mathbb {R}^3}|u+w|^6\,\mathrm{d}x\Big )^{\frac{1}{3}} \end{aligned}$$

for any u in \(W_0^6(\mathrm {curl};\Omega )\subset W_0^6(\mathrm {curl};\mathbb {R}^3)\), where \(W_0^6(\mathrm {curl};\Omega )\) is the closure of \(\mathcal {C}_0^{\infty }(\Omega ,\mathbb {R}^3)\) in \(\{u\in L^6(\Omega ,\mathbb {R}^3): \nabla \times u\in L^2(\Omega ,\mathbb {R}^3)\}\) with respect to the norm \((|u|_6^2+|\nabla \times u|_2^2)^{1/2}\). We show that \(S_{\mathrm {curl}}(\Omega )\) is strictly larger than the classical Sobolev constant S in \(\mathbb {R}^3\). Moreover, \(S_{\mathrm {curl}}(\Omega )\) is independent of \(\Omega \) and is attained by a ground state solution to the curl–curl problem

$$\begin{aligned} \nabla \times (\nabla \times u) = |u|^4u \end{aligned}$$

if \(\Omega =\mathbb {R}^3\). With the aid of these results we also investigate ground states of the Brezis–Nirenberg-type problem for the curl–curl operator in a bounded domain \(\Omega \)

$$\begin{aligned} \nabla \times (\nabla \times u) +\lambda u = |u|^4u\quad \hbox {in }\Omega , \end{aligned}$$

with the so-called metallic boundary condition \(\nu \times u=0\) on \(\partial \Omega \), where \(\nu \) is the exterior normal to \(\partial \Omega \).



中文翻译:

具有临界 Sobolev 指数的卷曲-卷曲方程的卷曲算子和基态的 Sobolev 型不等式

\(\Omega \subset \mathbb {R}^3\)是一个 Lipschitz 域,并让\(S_\mathrm {curl}(\Omega )\)是最大的常数,使得

$$\begin{aligned} \int _{\mathbb {R}^3}|\nabla \times u|^2\, \mathrm{d}x\ge S_{\mathrm {curl}}(\Omega ) \inf _{\begin{array}{c} w\in W_0^6(\mathrm {curl};\mathbb {R}^3)\\ \nabla \times w=0 \end{array}}\Big (\int _{\mathbb {R}^3}|u+w|^6\,\mathrm{d}x\Big )^{\frac{1}{3}} \end{aligned}$$

对于任何ü\(W_0 ^ 6(\ mathrm {卷曲}; \欧米茄)\子集W_0 ^ 6(\ mathrm {卷曲}; \ mathbb {R} ^ 3)\) ,其中\(W_0 ^ 6(\ mathrm {curl};\Omega )\)\(\mathcal {C}_0^{\infty }(\Omega ,\mathbb {R}^3)\)\(\{u\in L ^6(\Omega ,\mathbb {R}^3): \nabla \times u\in L^2(\Omega ,\mathbb {R}^3)\}\)相对于范数\((| u|_6^2+|\nabla \times u|_2^2)^{1/2}\)。我们表明,\(S _ {\ mathrm {卷曲}}(\欧米茄)\)是严格比经典的Sobolev常数大小号\(\ mathbb {R} ^ 3 \) 。此外,\(S_{\mathrm {curl}}(\Omega )\)独立于\(\Omega \) 并且通过卷曲-卷曲问题的基态解获得

$$\begin{aligned} \nabla \times (\nabla \times u) = |u|^4u \end{aligned}$$

如果\(\Omega =\mathbb {R}^3\)。借助这些结果,我们还研究了有界域\(\Omega \) 中curl-curl 算子的 Brezis-Nirenberg 型问题的基态

$$\begin{aligned} \nabla \times (\nabla \times u) +\lambda u = |u|^4u\quad \hbox {in }\Omega , \end{aligned}$$

与所谓的金属边界条件\(\nu \times u=0\)\(\partial \Omega \) 上,其中\(\nu \)\(\partial \Omega \)的外部法线。

更新日期:2021-06-11
down
wechat
bug