当前位置: X-MOL 学术J. Geophys. Res. Space Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spatio-Temporal Evolution of Global Ionospheric Storm Drivers and Hemispherical Asymmetry During 17–18 March 2015 Geomagnetic Storm
Journal of Geophysical Research: Space Physics ( IF 2.8 ) Pub Date : 2021-06-10 , DOI: 10.1029/2021ja029348
Dejene Ambisa Terefe 1, 2 , Melessew Nigussie 1
Affiliation  

The local, regional, and global morphology of the ionospheric response of the March 2015 geomagnetic storm has been investigated by different studies. However, the spatio-temporal evolution of the drivers of the global ionospheric response to this storm has not yet been investigated, using multi-data sources, in detail. Therefore, in this study drivers of the ionospheric response to the March 17–18, 2015 storm are investigated. Spatial and temporal variations of deposition of solar wind energy are found to be the cause for hemispherical asymmetry of the response of the ionosphere; the American-Canada-Greenland sector, Northern Hemisphere high-latitude ionosphere responded about 12 h earlier than the Southern Hemisphere (SH) high-latitude ionosphere, resulted from hemispherical energy imbalance as detected from Hemispherical Power. The positive ionospheric storm observed in the high-latitude regions is found to be due to solar wind energy deposition at high latitudes. Interestingly, it is found that the Northern hemisphere ionospheric positive storm shifted to the mid-latitude and disappeared there whereas the SH ionospheric positive storm shifted to mid-latitude and then farther to the low-latitude with time; this spatio-temporal evaluation of positive ionospheric storm is found to be due to the spatio-temporal enhancement of the O/N2 ratio. Also, the mid (Europe-African)and low (Brazilian) latitudes positive ionospheric storms prevailed due to prompt penetration electric fields, disturbance dynamo electric fields, and enhancement of the O/N2 ratio. Moreover, the negative ionospheric storm, observed at the NH high and mid-latitudes in the American and Asian sectors, is linked to the reduction of the O/N2 ratio.

中文翻译:

2015 年 3 月 17-18 日地磁风暴期间全球电离层风暴驱动因素和半球不对称性的时空演变

2015 年 3 月地磁暴电离层响应的局地、区域和全球形态已通过不同的研究进行了调查。然而,尚未使用多数据源详细研究全球电离层对该风暴响应的驱动因素的时空演变。因此,本研究调查了电离层响应 2015 年 3 月 17-18 日风暴的驱动因素。发现太阳风能沉积的时空变化是电离层响应半球不对称的原因;在美国-加拿大-格陵兰地区,北半球高纬度电离层比南半球 (SH) 高纬度电离层响应早约 12 小时,这是由半球功率检测到的半球能量不平衡造成的。发现在高纬度地区观测到的正电离层风暴是由于高纬度地区的太阳风能沉积所致。有趣的是,发现北半球电离层正风暴移动到中纬度并在那里消失,而SH电离层正风暴随着时间的推移移动到中纬度然后进一步向低纬度移动;发现正电离层风暴的这种时空评估是由于 O/N 的时空增强 发现北半球电离层正风暴移动到中纬度并在那里消失,而SH电离层正风暴随着时间的推移移动到中纬度然后进一步向低纬度移动;发现正电离层风暴的这种时空评估是由于 O/N 的时空增强 发现北半球电离层正风暴移动到中纬度并在那里消失,而SH电离层正风暴随着时间的推移移动到中纬度然后进一步向低纬度移动;发现正电离层风暴的这种时空评估是由于 O/N 的时空增强2比例。此外,由于快速穿透电场、扰动发电机电场和O/N 2比的增强,中(欧洲-非洲)和低(巴西)纬度正电离层风暴盛行。此外,在美国和亚洲地区的 NH 高纬度和中纬度地区观测到的负电离层风暴与 O/N 2比率的降低有关。
更新日期:2021-06-22
down
wechat
bug