当前位置: X-MOL 学术Enzyme Microb. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Double MS2 guided restoration of genetic code in amber (TAG), opal (TGA) and ochre (TAA) stop codon
Enzyme and Microbial Technology ( IF 3.4 ) Pub Date : 2021-06-11 , DOI: 10.1016/j.enzmictec.2021.109851
Sonali Bhakta 1 , Toshifumi Tsukahara 2
Affiliation  

The popularity and promise of gene therapy for common genetic diseases are currently increasing. Although effective treatments for genetic disorders are rare, editing of the mutated gene is a possible therapeutic approach for conditions caused by stop codon mutations, including either amber (TAG), opal (TGA) or ochre (TAA) stop codons. Restoration of point-mutated RNAs using artificial RNA editing can be used to modify gene-encoded information and generate functionally distinct proteins from a single gene. By linking the catalytic domain of the RNA editing enzyme, adenosine deaminase acting on RNA (ADAR), to an antisense guide RNA, specific adenosines (A) can be converted to inosine (I), which is recognized as guanosine (G) during translation. In this study, we engineered the deaminase domain of ADAR1 and the MS2 system to target a specific adenosine and restore the G to A mutations. To this end, the ADAR1 deaminase domain was fused with the RNA binding protein, MS2, which binds to MS2 RNA. Guide RNAs of 19 bp were designed to be complementary to target mRNAs, with either 6X stem-loops downstream of the guide RNA and a CMV promoter, or a 1X MS2 stem-loop on either side of the guide RNA and a U6 promoter. The engineered ADAR1 deaminase domain could convert adenosine to inosine at the desired editing site in EGFP, which was edited to contain an amber (TAG), opal (TGA) or ochre (TAA) stop codon. The system could convert the stop codons to a read-through tryptophan codon (TGG) in a cellular system, leading to fluorescence emission, observed using JuLi microscopy. PCR-RFLP and Sanger sequencing of the target transcript were also conducted, revealing an editing efficiency of 20.97 % for the opal stop codon, and 26 % and 17 % for the 5′ and 3′ A residues, respectively, in the ochre stop codon, using the double MS2. This was a higher editing rate than that achieved using the MS2−6X guide RNA. Observation of restoration of the read-through codon from the three different stop codons over time demonstrated a relatively low percentage of edited codons after 24 h, which increased after 48 h, but decreased again after 72 h. Successful establishment of this system has the potential to represent a new era in the field of gene therapy.



中文翻译:

双 MS2 引导恢复琥珀 (TAG)、蛋白石 (TGA) 和赭石 (TAA) 终止密码子中的遗传密码

目前,针对常见遗传疾病的基因治疗越来越受欢迎。虽然对遗传疾病的有效治疗很少见,但编辑突变基因是一种可能的治疗方法,用于治疗由终止密码子突变引起的疾病,包括琥珀 (TAG)、蛋白石 (TGA) 或赭石 (TAA) 终止密码子。使用人工 RNA 编辑恢复点突变的 RNA 可用于修改基因编码信息并从单个基因生成功能不同的蛋白质。通过将 RNA 编辑酶的催化域、作用于 RNA 的腺苷脱氨酶 (ADAR) 连接到反义引导 RNA,特定的腺苷 (A) 可以转化为肌苷 (I),肌苷 (I) 在翻译过程中被识别为鸟苷 (G) . 在这项研究中,我们设计了 ADAR1 的脱氨酶结构域和 MS2 系统以靶向特定的腺苷并将 G 恢复为 A 突变。为此,ADAR1 脱氨酶结构域与 RNA 结合蛋白 MS2 融合,MS2 与 MS2 RNA 结合。19 bp 的引导 RNA 被设计为与目标 mRNA 互补,引导 RNA 下游有 6X 茎环和 CMV 启动子,或引导 RNA 两侧的 1X MS2 茎环和 U6 启动子。工程化的 ADAR1 脱氨酶域可以在 EGFP 中所需的编辑位点将腺苷转化为肌苷,该位点被编辑为包含琥珀色 (TAG)、蛋白石 (TGA) 或赭石 (TAA) 终止密码子。该系统可以将终止密码子转换为细胞系统中的通读色氨酸密码子 (TGG),从而导致荧光发射,使用 JuLi 显微镜观察。还进行了目标转录物的 PCR-RFLP 和 Sanger 测序,显示蛋白石终止密码子的编辑效率为 20.97%,赭石终止密码子中的 5' 和 3'A 残基的编辑效率分别为 26% 和 17% ,使用双 MS2。这比使用 MS2-6X 引导 RNA 实现的编辑率更高。随着时间的推移从三个不同的终止密码子恢复通读密码子的观察表明,24 小时后编辑密码子的百分比相对较低,在 48 小时后增加,但在 72 小时后再次下降。该系统的成功建立有可能代表基因治疗领域的新时代。在赭石终止密码子中,使用双 MS2。这比使用 MS2-6X 引导 RNA 实现的编辑率更高。随着时间的推移从三个不同的终止密码子恢复通读密码子的观察表明,24 小时后编辑密码子的百分比相对较低,在 48 小时后增加,但在 72 小时后再次下降。该系统的成功建立有可能代表基因治疗领域的新时代。在赭石终止密码子中,使用双 MS2。这比使用 MS2-6X 引导 RNA 实现的编辑率更高。随着时间的推移从三个不同的终止密码子恢复通读密码子的观察表明,24 小时后编辑密码子的百分比相对较低,在 48 小时后增加,但在 72 小时后再次下降。该系统的成功建立有可能代表基因治疗领域的新时代。

更新日期:2021-06-17
down
wechat
bug