当前位置: X-MOL 学术J. Non Equilib. Thermodyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of Hybrid ANFIS–CFD Model for Design and Optimization of Membrane Separation of Benzoic Acid
Journal of Non-Equilibrium Thermodynamics ( IF 6.6 ) Pub Date : 2019-07-26 , DOI: 10.1515/jnet-2018-0064
Samyar Zabihi 1 , Mashallah Rezakazemi 2 , S. H. Gholizadeh Moghaddam 3 , Saeed Shirazian 4, 5
Affiliation  

Abstract In this work, a novel hybrid model was developed in order to study the membrane-based liquid separation process. The membrane system was a continuous hollow-fiber membrane module for contacting two aqueous and organic phases for reactive extraction of benzoic acid (BA) from aqueous solution. Two simulation approaches were utilized in order to build a robust hybrid model. The hybrid model is composed of computational fluid dynamics (CFD) and Adaptive Neuro-Fuzzy Inference System (ANFIS) elements. First, the CFD approach was used in order to capture the mass transfer of the system, whereas ANFIS was trained using the obtained CFD results. The hybrid model was used to predict the concentration distribution of solute in the membrane contactor. The combined simulation methodology can reduce the computational costs and time significantly, while it predicts the process with high accuracy. The ANFIS was trained based on the extracted data of concentration distribution from the CFD simulations, and the training and test analyses indicated great agreement. Different membership functions were evaluated, and it was revealed that using three functions, an R 2 {R^{2}} of 0.996 was obtained. The simulation results reveal that the BA concentration was changed along the membrane length and diffusional mass transfer is more significant in order to improve the separation efficiency of BA using membrane contactors. The developed hybrid simulation methodology is capable of design and optimization of membrane-based separation at low computational expenses and provides a predictive tool for process intensification.

中文翻译:

开发用于设计和优化苯甲酸膜分离的混合 ANFIS-CFD 模型

摘要 在这项工作中,为了研究基于膜的液体分离过程,开发了一种新的混合模型。该膜系统是一个连续的中空纤维膜组件,用于接触两个水相和有机相,以从水溶液中反应萃取苯甲酸 (BA)。为了建立稳健的混合模型,使用了两种模拟方法。混合模型由计算流体动力学 (CFD) 和自适应神经模糊推理系统 (ANFIS) 元素组成。首先,使用 CFD 方法来捕获系统的传质,而使用获得的 CFD 结果训练 ANFIS。混合模型用于预测膜接触器中溶质的浓度分布。组合仿真方法可以显着降低计算成本和时间,同时它以高精度预测过程。ANFIS 根据从 CFD 模拟中提取的浓度分布数据进行训练,训练和测试分析表明非常一致。评估了不同的隶属函数,结果表明使用三个函数,获得了 0.996 的 R 2 {R^{2}}。模拟结果表明,BA 浓度沿膜长度变化,扩散传质更显着,以提高使用膜接触器的 BA 分离效率。开发的混合模拟方法能够以低计算成本设计和优化基于膜的分离,并为过程强化提供预测工具。ANFIS 根据从 CFD 模拟中提取的浓度分布数据进行训练,训练和测试分析表明非常一致。评估了不同的隶属函数,结果表明使用三个函数,获得了 0.996 的 R 2 {R^{2}}。模拟结果表明,BA 浓度沿膜长度变化,扩散传质更显着,以提高使用膜接触器的 BA 分离效率。开发的混合模拟方法能够以低计算成本设计和优化基于膜的分离,并为过程强化提供预测工具。ANFIS 根据从 CFD 模拟中提取的浓度分布数据进行训练,训练和测试分析表明非常一致。评估了不同的隶属函数,结果表明使用三个函数,获得了 0.996 的 R 2 {R^{2}}。模拟结果表明,BA 浓度沿膜长度变化,扩散传质更显着,以提高使用膜接触器的 BA 分离效率。开发的混合模拟方法能够以低计算成本设计和优化基于膜的分离,并为过程强化提供预测工具。评估了不同的隶属函数,结果表明使用三个函数,获得了 0.996 的 R 2 {R^{2}}。模拟结果表明,BA 浓度沿膜长度变化,扩散传质更显着,以提高使用膜接触器的 BA 分离效率。开发的混合模拟方法能够以低计算成本设计和优化基于膜的分离,并为过程强化提供预测工具。评估了不同的隶属函数,结果表明使用三个函数,获得了 0.996 的 R 2 {R^{2}}。模拟结果表明,BA 浓度沿膜长度变化,扩散传质更显着,以提高使用膜接触器的 BA 分离效率。开发的混合模拟方法能够以低计算成本设计和优化基于膜的分离,并为过程强化提供预测工具。模拟结果表明,BA 浓度沿膜长度变化,扩散传质更显着,以提高使用膜接触器的 BA 分离效率。开发的混合模拟方法能够以低计算成本设计和优化基于膜的分离,并为过程强化提供预测工具。模拟结果表明,BA 浓度沿膜长度变化,扩散传质更显着,以提高使用膜接触器的 BA 分离效率。开发的混合模拟方法能够以低计算成本设计和优化基于膜的分离,并为过程强化提供预测工具。
更新日期:2019-07-26
down
wechat
bug