当前位置: X-MOL 学术Prog. Neurobiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Glucose metabolic crosstalk and regulation in brain function and diseases
Progress in Neurobiology ( IF 6.7 ) Pub Date : 2021-06-10 , DOI: 10.1016/j.pneurobio.2021.102089
Shuai Zhang 1 , Brittany Bolduc Lachance 2 , Mark P Mattson 3 , Xiaofeng Jia 4
Affiliation  

Brain glucose metabolism, including glycolysis, the pentose phosphate pathway, and glycogen turnover, produces ATP for energetic support and provides the precursors for the synthesis of biological macromolecules. Although glucose metabolism in neurons and astrocytes has been extensively studied, the glucose metabolism of microglia and oligodendrocytes, and their interactions with neurons and astrocytes, remain critical to understand brain function. Brain regions with heterogeneous cell composition and cell-type-specific profiles of glucose metabolism suggest that metabolic networks within the brain are complex. Signal transduction proteins including those in the Wnt, GSK-3β, PI3K-AKT, and AMPK pathways are involved in regulating these networks. Additionally, glycolytic enzymes and metabolites, such as hexokinase 2, acetyl-CoA, and enolase 2, are implicated in the modulation of cellular function, microglial activation, glycation, and acetylation of biomolecules. Given these extensive networks, glucose metabolism dysfunction in the whole brain or specific cell types is strongly associated with neurologic pathology including ischemic brain injury and neurodegenerative disorders. This review characterizes the glucose metabolism networks of the brain based on molecular signaling and cellular and regional interactions, and elucidates glucose metabolism-based mechanisms of neurological diseases and therapeutic approaches that may ameliorate metabolic abnormalities in those diseases.



中文翻译:

葡萄糖代谢串扰与脑功能和疾病的调节

大脑葡萄糖代谢,包括糖酵解、磷酸戊糖途径和糖原转换,产生 ATP 以提供能量支持,并为生物大分子的合成提供前体。尽管神经元和星形胶质细胞中的葡萄糖代谢已被广泛研究,但小胶质细胞和少突胶质细胞的葡萄糖代谢以及它们与神经元和星形胶质细胞的相互作用对于理解大脑功能仍然至关重要。具有异质细胞组成和细胞类型特异性葡萄糖代谢谱的大脑区域表明大脑内的代谢网络很复杂。包括 Wnt、GSK-3β、PI3K-AKT 和 AMPK 通路中的信号转导蛋白参与调节这些网络。此外,糖酵解酶和代谢物,如己糖激酶 2、乙酰辅酶 A 和烯醇化酶 2,参与调节细胞功能、小胶质细胞活化、糖基化和生物分子的乙酰化。鉴于这些广泛的网络,整个大脑或特定细胞类型中的葡萄糖代谢功能障碍与包括缺血性脑损伤和神经退行性疾病在内的神经病理学密切相关。这篇综述基于分子信号和细胞和区域相互作用描述了大脑的葡萄糖代谢网络,并阐明了基于葡萄糖代谢的神经疾病机制和可能改善这些疾病代谢异常的治疗方法。全脑或特定细胞类型的葡萄糖代谢功能障碍与包括缺血性脑损伤和神经退行性疾病在内的神经病理学密切相关。这篇综述基于分子信号和细胞和区域相互作用描述了大脑的葡萄糖代谢网络,并阐明了基于葡萄糖代谢的神经疾病机制和可能改善这些疾病代谢异常的治疗方法。全脑或特定细胞类型的葡萄糖代谢功能障碍与包括缺血性脑损伤和神经退行性疾病在内的神经病理学密切相关。这篇综述基于分子信号和细胞和区域相互作用描述了大脑的葡萄糖代谢网络,并阐明了基于葡萄糖代谢的神经疾病机制和可能改善这些疾病代谢异常的治疗方法。

更新日期:2021-08-10
down
wechat
bug