当前位置: X-MOL 学术Struct. Multidisc. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
TopADD: a 2D/3D integrated topology optimization parallel-computing framework for arbitrary design domains
Structural and Multidisciplinary Optimization ( IF 3.9 ) Pub Date : 2021-06-10 , DOI: 10.1007/s00158-021-02917-z
Zhi-Dong Zhang , Osezua Ibhadode , Ali Bonakdar , Ehsan Toyserkani

In this work, a two-dimensional (2D) and three-dimensional (3D) integrated topology optimization (TO) parallel-computing framework, named TopADD (TOPology optimization for Arbitrary Design Domains), is developed to deal with topology optimization problems with arbitrary design domains. The parallel-computing framework is an extended work of the initial parallel-computing framework developed by Aage et al. (Struct Multidiscip Optim 51(3): 565–572, 2015). The extension is threefold: (a) a 2D implementation has been incorporated into the framework to achieve seamless switching between 2D and 3D dimensions; (b) an efficient voxelizer that can initialize complex geometries into the design domains for topology optimization is developed; and (c) besides the compliance minimization problem, two other physics have been considered: the compliant mechanism and the heat conduction problems. Additionally, the computational efficiency of the proposed framework has been examined. Compared to the other frameworks in the literature, the proposed work has superior efficiency in both computational time and memory usage. Lastly, the proposed topology optimization framework’s compatibility with additive manufacturing (AM) has been demonstrated by exporting and printing the final optimized parts without postprocessing.



中文翻译:

TopADD:用于任意设计域的 2D/3D 集成拓扑优化并行计算框架

在这项工作中,开发了一个二维 (2D) 和三维 (3D) 集成拓扑优化 (TO) 并行计算框架,名为 TopADD(任意设计域的拓扑优化),用于处理任意设计域的拓扑优化问题。设计领域。并行计算框架是 Aage 等人开发的初始并行计算框架的扩展工作。(Struct Multidiscip Optim 51(3): 565–572, 2015)。扩展有三个方面:(a) 框架中加入了 2D 实现,以实现 2D 和 3D 维度之间的无缝切换;(b) 开发了一种高效的体素器,可以将复杂的几何形状初始化为拓扑优化的设计域;(c) 除了合规性最小化问题外,还考虑了另外两个物理学:顺应机制和热传导问题。此外,还检查了所提出框架的计算效率。与文献中的其他框架相比,所提出的工作在计算时间和内存使用方面都具有更高的效率。最后,所提出的拓扑优化框架与增材制造 (AM) 的兼容性已经通过在没有后处理的情况下导出和打印最终优化的零件来证明。

更新日期:2021-06-10
down
wechat
bug