当前位置: X-MOL 学术npj 2D Mater. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity
npj 2D Materials and Applications ( IF 9.7 ) Pub Date : 2021-06-10 , DOI: 10.1038/s41699-021-00241-0
Qianfan Nie , Caifang Gao , Feng-Shou Yang , Ko-Chun Lee , Che-Yi Lin , Xiang Wang , Ching-Hwa Ho , Chen-Hsin Lien , Shu-Ping Lin , Mengjiao Li , Yen-Fu Lin , Wenwu Li , Zhigao Hu , Junhao Chu

Recently, researchers have focused on optoelectronics based on two-dimensional van der Waals materials to realize multifunctional memory and neuron applications. Layered indium selenide (InSe) semiconductors satisfy various requirements as photosensitive channel materials, and enable the realization of intriguing optoelectronic applications. Herein, we demonstrate InSe photonic devices with different trends of output currents rooted in the carrier capture/release events under various gate voltages. Furthermore, we reported an increasing/flattening/decreasing synaptic weight change index (∆Wn) via a modulated gate electric field, which we use to imitate medicine-acting metaplasticity with effective/stable/ineffective features analogous to the synaptic weight change in the nervous system of the human brain. Finally, we take advantage of the low-frequency noise (LFN) measurements and the energy-band explanation to verify the rationality of carrier capture-assisted optoelectronics applied to neural simulation at the device level. Utilizing optoelectronics to simulate essential biomedical neurobehaviors, we experimentally demonstrate the feasibility and meaningfulness of combining electronic engineering with biomedical neurology.



中文翻译:

基于范德华材料的载流子捕获辅助光电子学模拟药物作用的化生性

最近,研究人员专注于基于二维范德华材料的光电子学,以实现多功能记忆和神经元应用。层状硒化铟 (InSe) 半导体满足作为光敏通道材料的各种要求,并能够实现有趣的光电应用。在此,我们展示了具有不同输出电流趋势的 InSe 光子器件,这些趋势源于不同栅极电压下的载流子捕获/释放事件。此外,我们报告了增加/扁平/减少的突触权重变化指数(ΔW n)通过调制栅极电场,我们用它来模拟具有有效/稳定/无效特征的药物作用化生性,类似于人脑神经系统中突触权重的变化。最后,我们利用低频噪声 (LFN) 测量和能带解释来验证载流子捕获辅助光电子学应用于设备级神经模拟的合理性。利用光电子学来模拟基本的生物医学神经行为,我们通过实验证明了将电子工程与生物医学神经学相结合的可行性和意义。

更新日期:2021-06-10
down
wechat
bug