当前位置: X-MOL 学术Met. Mater. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructural and Wear Behaviour of Al 6063–W Nanocomposites Developed Using Friction Stir Processing
Metals and Materials International ( IF 3.5 ) Pub Date : 2021-06-09 , DOI: 10.1007/s12540-021-01029-z
L. Feroz Ali , N. Kuppuswamy , R. Soundararajan , K. R. Ramkumar , S. Sivasankaran

The goal of the present research is to introduce the Tungsten (W) nanoparticles as reinforcement into Al 6063 alloy to produce Al–W nanocomposites by the FSP technique. The vol% of the reinforcement was varied from 3 to 12 with a step of 3, besides the unreinforced Al matrix was considered as 0 vol% for comparison. The role of W nanoparticles in the Al 6063 matrix has been exhaustively investigated using advanced characterization techniques such as XRD analysis to observe the phases, FESEM to detect the distribution of reinforcements with their interparticle spacing and the average grain sizes, TEM analysis to study the strengthening factors, new phase formation at the interface between AA 6063 matrix and W particles, the morphology of the W nanoparticles. The achieved average matrix grains size was 42, 2, and 0.9 μm for 0, 6, and 12 vol% W nanocomposites, respectively. The obtained results disclosed the uniform dispersion of W nanoparticles, without any agglomeration, and with the absence of intermetallic compounds. The hardness and wear resistance of the fabricated nanocomposites were increased incommensurate with the incorporation of heavy metallic W element as reinforcement particle; which was due to the proper dispersion of W nanoparticles, refinement of matrix grains to ultrafine level, generation of dislocations, and clear interface between Al 6063 matrix and W nanoparticles. In a nutshell, AA 6063–12 vol% W nanocomposite has achieved the higher hardness (120 HV), lower wear rate (0.13 mm3/m), and friction coefficient (0.33) than other nanocomposites.

Graphic abstract



中文翻译:

使用搅拌摩擦加工开发的 Al 6063-W 纳米复合材料的微观结构和磨损行为

本研究的目标是将钨 (W) 纳米粒子作为增强剂引入 Al 6063 合金,通过 FSP 技术生产 Al-W 纳米复合材料。增强体的体积百分比从 3 变化到 12,步长为 3,此外未增强的 Al 基体被视为 0 体积百分比以进行比较。钨纳米粒子在 Al 6063 基体中的作用已经使用先进的表征技术进行了详尽的研究,例如 XRD 分析来观察相,FESEM 来检测增强剂的分布及其颗粒间距和平均晶粒尺寸,TEM 分析来研究强化AA 6063 基体和钨颗粒之间界面处的新相形成,钨纳米颗粒的形态。对于 0、6、和 12 vol% W 纳米复合材料。所得结果揭示了钨纳米颗粒的均匀分散,没有任何团聚,并且不存在金属间化合物。制备的纳米复合材料的硬度和耐磨性随着重金属W元素作为增强颗粒的加入而增加;这是由于 W 纳米颗粒的适当分散、基体晶粒细化到超细水平、位错的产生以及 Al 6063 基体和 W 纳米颗粒之间的清晰界面。简而言之,AA 6063–12 vol% W 纳米复合材料具有更高的硬度 (120 HV)、更低的磨损率 (0.13 mm 制备的纳米复合材料的硬度和耐磨性随着重金属W元素作为增强颗粒的加入而增加;这是由于 W 纳米颗粒的适当分散、基体晶粒细化到超细水平、位错的产生以及 Al 6063 基体和 W 纳米颗粒之间的清晰界面。简而言之,AA 6063–12 vol% W 纳米复合材料具有更高的硬度 (120 HV)、更低的磨损率 (0.13 mm 制备的纳米复合材料的硬度和耐磨性随着重金属W元素作为增强颗粒的加入而增加;这是由于 W 纳米颗粒的适当分散、基体晶粒细化到超细水平、位错的产生以及 Al 6063 基体和 W 纳米颗粒之间的清晰界面。简而言之,AA 6063–12 vol% W 纳米复合材料具有更高的硬度 (120 HV)、更低的磨损率 (0.13 mm3 /m),摩擦系数(0.33)高于其他纳米复合材料。

图形摘要

更新日期:2021-06-09
down
wechat
bug