当前位置: X-MOL 学术Prog. Polym. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Best practices and recommendations for accurate nanomechanical characterization of heterogeneous polymer systems with atomic force microscopy.
Progress in Polymer Science ( IF 27.1 ) Pub Date : 2021-06-09 , DOI: 10.1016/j.progpolymsci.2021.101420
David W. Collinson , Richard J. Sheridan , Marc J. Palmeri , L. Catherine Brinson

The past two decades have seen atomic force microscopy (AFM) evolve from an experimental technique to probe simple surface topography to one that can spatially map nanoscale material properties with exquisite sensitivity and high resolution. An expanding array of modes and analysis methods has made AFM a widely used technique for extracting nanoscale elastic and viscoelastic data from polymers and other soft materials. However, the assumptions required for interpretation of nanoscale mechanical data on polymers and the lack of clarity on the best practices for the different modes limits the quantitative accuracy of AFM methods and the interpretation of mechanical data. The analysis of AFM data becomes even more complex when multiple phases are present in a sample which further convolute measurements and the interpretation of the output data. Here, we present a comprehensive summary of modes and contact mechanics analyses relevant for AFM on polymers, along with assessment of sources of error and potential artifacts in measurement data on these soft, adhesive, viscoelastic and often heterogenous materials. As a result of the review into AFM best practices, we provide a series of recommendations for conducting quantitative AFM measurements on polymer systems. Finally, we investigate the impact of these advancements in the context of a specific case study: measurement of mechanical property gradients in nanostructured polymers.



中文翻译:

使用原子力显微镜对异质聚合物系统进行精确纳米力学表征的最佳实践和建议。

在过去的 20 年里,原子力显微镜 (AFM) 从一种探测简单表面形貌的实验技术发展为一种能够以极高的灵敏度和高分辨率空间映射纳米级材料特性的技术。一系列不断扩展的模式和分析方法使 AFM 成为一种广泛使用的技术,用于从聚合物和其他软材料中提取纳米级弹性和粘弹性数据。然而,解释聚合物纳米级机械数据所需的假设以及不同模式的最佳实践缺乏清晰度限制了 AFM 方法的定量准确性和机械数据的解释。当样品中存在多个相时,AFM 数据的分析变得更加复杂,这进一步使测量和输出数据的解释变得复杂。这里,我们全面总结了与聚合物 AFM 相关的模式和接触力学分析,以及对这些柔软、粘性、粘弹性和通常异质材料的测量数据中的误差来源和潜在伪影的评估。作为对 AFM 最佳实践的审查的结果,我们提供了一系列对聚合物系统进行定量 AFM 测量的建议。最后,我们在特定案例研究的背景下研究了这些进步的影响:测量纳米结构聚合物的机械性能梯度。作为对 AFM 最佳实践的审查的结果,我们提供了一系列对聚合物系统进行定量 AFM 测量的建议。最后,我们在特定案例研究的背景下研究了这些进步的影响:测量纳米结构聚合物的机械性能梯度。作为对 AFM 最佳实践的审查的结果,我们提供了一系列对聚合物系统进行定量 AFM 测量的建议。最后,我们在特定案例研究的背景下研究了这些进步的影响:测量纳米结构聚合物的机械性能梯度。

更新日期:2021-06-09
down
wechat
bug