当前位置: X-MOL 学术J. Phys. B: At. Mol. Opt. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Attosecond technology(ies) and science
Journal of Physics B: Atomic, Molecular and Optical Physics ( IF 1.6 ) Pub Date : 2021-06-02 , DOI: 10.1088/1361-6455/abcdef
Jens Biegert 1, 2 , Francesca Calegari 3 , Nirit Dudovich 4 , Fabien Qur 5 , Marc Vrakking 6
Affiliation  

Since 2001 and the first demonstrations of the feasibility of generating and measuring attosecond light pulses, attosecond science has developed into a very active and quickly evolving research field. Its ultimate goal is the real-time tracking of electron dynamics in all forms of matter, ranging from atoms and large molecules to the condensed phase and plasmas. The accomplishment of this goal has required and still calls for developments in ultrafast laser technology, ultrafast metrology, extreme ultra-violet (XUV) optics, pump–probe measurement schemes and non-linear laser-matter interaction. Moreover, the interpretation of the experimental results in attosecond experiments has stimulated and guided major developments in theoretical descriptions of ultrafast electronic processes in matter. Motivated by these two decades of development, several large-scale facilities, including extreme light infrastructure—attosecond light pulse source (ELI-ALPS) and several free electron laser facilities (the linac coherent light source (LCLS) at Stanford and the European XFEL in Hamburg) are now pushing the development of a new generation of attosecond sources. This considerable technological effort opens new and important perspectives in the field of ultrafast science with potential applications in photochemistry, photobiology and advanced electronics. In this context, the joint focus issue on Attosecond technology(/ies) and science of J. Phys. Photon. and J. Phys. B: At. Mol. Opt. Phys. aims to provide an overview of the state-of-the-art in attosecond science, from the basic science involved in the generation and in applications of attosecond pulses to the technologies that are required.



中文翻译:

阿秒技术和科学

自 2001 年首次展示产生和测量阿秒光脉冲的可行性以来,阿秒科学已发展成为一个非常活跃且发展迅速的研究领域。它的最终目标是实时跟踪所有形式的物质的电子动力学,从原子和大分子到凝聚相和等离子体。这一目标的实现需要并且仍然需要在超快激光技术、超快计量学、极紫外 (XUV) 光学、泵浦-探针测量方案和非线性激光-物质相互作用方面进行发展。此外,阿秒实验中实验结果的解释刺激并指导了物质中超快电子过程的理论描述的重大发展。在这两个十年发展的推动下,几个大型设施,包括极光基础设施——阿秒光脉冲源(ELI-ALPS)和几个自由电子激光设施(斯坦福的直线加速器相干光源(LCLS)和汉堡的欧洲XFEL)现在正在推动发展新一代阿秒光源。这一相当大的技术努力为超快科学领域开辟了新的重要视角,并在光化学、光生物学和先进电子学方面具有潜在应用。在此背景下,阿秒技术和科学的联合焦点问题 包括极光基础设施——阿秒光脉冲源(ELI-ALPS)和几个自由电子激光设施(斯坦福的直线加速器相干光源(LCLS)和汉堡的欧洲XFEL)现在正在推动新一代阿秒源的开发. 这一相当大的技术努力为超快科学领域开辟了新的重要视角,并在光化学、光生物学和先进电子学方面具有潜在应用。在此背景下,阿秒技术和科学的联合焦点问题 包括极光基础设施——阿秒光脉冲源(ELI-ALPS)和几个自由电子激光设施(斯坦福的直线加速器相干光源(LCLS)和汉堡的欧洲XFEL)正在推动新一代阿秒光源的开发. 这一相当大的技术努力为超快科学领域开辟了新的重要视角,并在光化学、光生物学和先进电子学方面具有潜在应用。在此背景下,阿秒技术和科学的联合焦点问题J.物理。光子。J. Phys。乙:在。摩尔。选择。物理。旨在概述阿秒科学的最新技术,从涉及阿秒脉冲产生和应用的基础科学到所需的技术。

更新日期:2021-06-02
down
wechat
bug