当前位置: X-MOL 学术J. Micromech. Microeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Integrative 3D printing method for rapid additive manufacturing of a capacitive force sensor
Journal of Micromechanics and Microengineering ( IF 2.3 ) Pub Date : 2021-05-11 , DOI: 10.1088/1361-6439/abf843
G D Liu 1 , C H Wang 1 , Z L Jia 2 , K X Wang 1
Affiliation  

With the rapid development of the three-dimensional printing (3D printing) technique, several electronic devices have been fabricated by 3D printing. Compared with the traditional micro electromechanical system (MEMS) manufacturing processes, the 3D printing technique provides a convenient method to meet the customers’ personalized demands. However, the applications of 3D printing are restricted by the electrically insulating properties of the commonly used polymers. Besides, additional alignment and assembling processes are still indispensable to fabricate the MEMS devices with geometrically complex structures using the conventional 3D printers. In order to solve these problems, an integrative 3D printing approach for rapid manufacturing is presented in this paper. With a triple-extruder 3D printer, the electrically insulating polylactic acid (PLA) filament, the electrically conductive PLA filament, and the soluble high impact polystyrene filament can be printed alternately in the 3D printing process. As an application of the method, a capacitive force sensor with a relatively complex suspended beam-plate structure was fabricated in a one-step 3D printing process without using any additional metallization process, unloading–reloading filament process, alignment process, and assembling process. With a good dynamic performance, the 3D printed force sensor was used to monitor human’s blood pulse. The results show that the integrative 3D printing method has potential to meet the emerging requirement for manufacturing of MEMS devices for personalized applications.



中文翻译:

一种用于快速增材制造电容式力传感器的集成 3D 打印方法

随着3D打印(3D打印)技术的飞速发展,3D打印制造了多种电子设备。与传统的微机电系统(MEMS)制造工艺相比,3D打印技术为满足客户的个性化需求提供了一种便捷的方法。然而,3D打印的应用受到常用聚合物电绝缘性能的限制。此外,使用传统的 3D 打印机制造具有几何复杂结构的 MEMS 器件仍然需要额外的对准和组装工艺。为了解决这些问题,本文提出了一种用于快速制造的集成 3D 打印方法。使用三重挤出机 3D 打印机,电绝缘聚乳酸(PLA)长丝、导电PLA长丝和可溶性高抗冲聚苯乙烯长丝可以在3D打印过程中交替打印。作为该方法的应用,在不使用任何额外的金属化过程、卸载-重新加载灯丝过程、对准过程和组装过程的情况下,通过一步 3D 打印过程制造了具有相对复杂的悬置梁板结构的电容式力传感器。3D打印的力传感器具有良好的动态性能,用于监测人体的脉搏。结果表明,集成 3D 打印方法有可能满足制造个性化应用的 MEMS 设备的新兴需求。并且可溶性高抗冲聚苯乙烯长丝可以在3D打印过程中交替打印。作为该方法的应用,在不使用任何额外的金属化过程、卸载-重新加载灯丝过程、对准过程和组装过程的情况下,通过一步 3D 打印过程制造了具有相对复杂的悬置梁板结构的电容式力传感器。3D打印的力传感器具有良好的动态性能,用于监测人体的脉搏。结果表明,集成 3D 打印方法有可能满足制造个性化应用的 MEMS 设备的新兴需求。并且可溶性高抗冲聚苯乙烯长丝可以在3D打印过程中交替打印。作为该方法的应用,在不使用任何额外的金属化过程、卸载-重新加载灯丝过程、对准过程和组装过程的情况下,通过一步 3D 打印过程制造了具有相对复杂的悬置梁板结构的电容式力传感器。3D打印的力传感器具有良好的动态性能,用于监测人体的脉搏。结果表明,集成 3D 打印方法有可能满足制造个性化应用的 MEMS 设备的新兴需求。具有相对复杂的悬挂梁板结构的电容式力传感器是在一步 3D 打印过程中制造的,无需使用任何额外的金属化过程、卸载-重新加载灯丝过程、对准过程和组装过程。3D打印的力传感器具有良好的动态性能,用于监测人体的脉搏。结果表明,集成 3D 打印方法有可能满足制造个性化应用的 MEMS 设备的新兴需求。具有相对复杂的悬挂梁板结构的电容式力传感器是在一步 3D 打印过程中制造的,无需使用任何额外的金属化过程、卸载-重新加载灯丝过程、对准过程和组装过程。3D打印的力传感器具有良好的动态性能,用于监测人体的脉搏。结果表明,集成 3D 打印方法有可能满足制造用于个性化应用的 MEMS 设备的新兴需求。

更新日期:2021-05-11
down
wechat
bug