当前位置: X-MOL 学术IEEE Trans. Comput. Imaging › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-Resolution Multi-Spectral Imaging With Diffractive Lenses and Learned Reconstruction
IEEE Transactions on Computational Imaging ( IF 5.4 ) Pub Date : 2021-04-23 , DOI: 10.1109/tci.2021.3075349
Figen S. Oktem , Oguzhan Fatih Kar , Can Deniz Bezek , Farzad Kamalabadi

Spectral imaging is a fundamental diagnostic technique with widespread application. Conventional spectral imaging approaches have intrinsic limitations on spatial and spectral resolutions due to the physical components they rely on. To overcome these physical limitations, in this paper, we develop a novel multi-spectral imaging modality that enables higher spatial and spectral resolutions. In the developed computational imaging modality, we exploit a diffractive lens, such as a photon sieve, for both dispersing and focusing the optical field, and achieve measurement diversity by changing the focusing behavior of this lens. Because the focal length of a diffractive lens is wavelength-dependent, each measurement is a superposition of differently blurred spectral components. To reconstruct the individual spectral images from these superimposed and blurred measurements, model-based fast reconstruction algorithms are developed with deep and analytical priors using alternating minimization and unrolling. Finally, the effectiveness and performance of the developed technique is illustrated for an application in astrophysical imaging under various observation scenarios in the extreme ultraviolet (EUV) regime. The results demonstrate that the technique provides not only diffraction-limited high spatial resolution, as enabled by diffractive lenses, but also the capability of resolving close-by spectral sources that would not otherwise be possible with the existing techniques. This work enables high resolution multi-spectral imaging with low cost designs for a variety of applications and spectral regimes.

中文翻译:

使用衍射透镜和学习重建的高分辨率多光谱成像

光谱成像是一种应用广泛的基本诊断技术。由于传统的光谱成像方法所依赖的物理组件,它们在空间和光谱分辨率方面具有内在的局限性。为了克服这些物理限制,在本文中,我们开发了一种新颖的多光谱成像模式,可实现更高的空间和光谱分辨率。在开发的计算成像模式中,我们利用衍射透镜(例如光子筛)来分散和聚焦光场,并通过改变该透镜的聚焦行为来实现测量多样性。由于衍射透镜的焦距与波长有关,因此每次测量都是不同模糊光谱分量的叠加。为了从这些叠加和模糊的测量中重建单个光谱图像,基于模型的快速重建算法是使用交替最小化和展开的深度和分析先验开发的。最后,说明了所开发技术的有效性和性能,用于在极紫外 (EUV) 范围内的各种观测场景下的天体物理成像中的应用。结果表明,该技术不仅提供了衍射极限的高空间分辨率,如衍射透镜所实现的,而且还提供了解析近距光谱源的能力,而这在其他情况下是现有技术无法实现的。这项工作以低成本设计实现高分辨率多光谱成像,适用于各种应用和光谱范围。基于模型的快速重建算法是使用交替最小化和展开的深度和分析先验开发的。最后,说明了所开发技术的有效性和性能,用于在极紫外 (EUV) 范围内的各种观测场景下的天体物理成像中的应用。结果表明,该技术不仅提供了衍射极限的高空间分辨率,如衍射透镜所实现的,而且还提供了解析近距光谱源的能力,而这在其他情况下是现有技术无法实现的。这项工作以低成本设计实现高分辨率多光谱成像,适用于各种应用和光谱范围。基于模型的快速重建算法是使用交替最小化和展开的深度和分析先验开发的。最后,说明了所开发技术的有效性和性能,用于在极紫外 (EUV) 范围内的各种观测场景下的天体物理成像中的应用。结果表明,该技术不仅提供了衍射极限的高空间分辨率,如衍射透镜所实现的,而且还提供了解析近距光谱源的能力,而这在其他情况下是现有技术无法实现的。这项工作以低成本设计实现高分辨率多光谱成像,适用于各种应用和光谱范围。
更新日期:2021-06-08
down
wechat
bug