当前位置: X-MOL 学术Digit. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A weather signal detection algorithm based on EVD in elevation for airborne weather radar
Digital Signal Processing ( IF 2.9 ) Pub Date : 2021-06-08 , DOI: 10.1016/j.dsp.2021.103118
Yu Wang , Di Wu , Qinghao Yu , Daiyin Zhu , Fanwang Meng

Interest is growing in the application of the spatial location information from weather scenario to the monitoring of meteorological signal for airborne weather radar system. Here, a new algorithm utilizes the differences between ground clutter and meteorological signal in terms of the spatial location in elevation dimension to achieve weather signal detection (WSD). Specifically, weather signal submerged in ground clutter background is detected over a so-called diagram of the second eigenvalue to improve weather observation. Generally, this diagram is acquired by implementing eigenvalue decomposition (EVD) operation on raw data which is collected via dual-channel in elevation. For WSD, the second eigenvalue in the diagram is employed as the test statistic. And this study investigates the statistics of the second eigenvalue in the case that weather signal component, ground clutter component and Gaussian noise are all complex Gaussian distributed and they are statistically independent. Based on the statistics, a constant false-alarm rate (CFAR) detector is also designed and then the second eigenvalue of the cell under test undergoes the CFAR detector to screen out the pixels containing meteorological signal component. Simulations, as well as experimental results, are presented to demonstrate the theoretical analysis and to evaluate the detection performance of the proposed EVD-based algorithm. As compared to most of the current WSD approaches, the presented EVD-based method really shows increased detection capability and great robustness.



中文翻译:

基于EVD的机载气象雷达高程气象信号检测算法

人们越来越关注将天气场景中的空间位置信息应用于机载天气雷达系统的气象信号监测。在这里,一种新算法利用地面杂波和气象信号在高程维度上的空间位置差异来实现天气信号检测(WSD)。具体而言,在所谓的第二特征值图上检测淹没在地物杂波背景中的天气信号,以改善天气观测。一般情况下,该图是通过对高程双通道采集的原始数据进行特征值分解(EVD)操作得到的。对于 WSD,图中的第二个特征值用作检验统计量。本研究考察了天气信号分量、地杂波分量和高斯噪声均为复高斯分布且统计独立的情况下的第二特征值的统计。在统计的基础上,还设计了恒定误报率(CFAR)检测器,然后被测单元的第二特征值经过CFAR检测器筛选出包含气象信号成分的像素。模拟以及实验结果被提出以证明理论分析并评估所提出的基于EVD的算法的检测性能。与大多数当前的 WSD 方法相比,所提出的基于 EVD 的方法确实显示出增强的检测能力和强大的鲁棒性。地杂波分量和高斯噪声都是复高斯分布,并且在统计上是独立的。在统计的基础上,还设计了恒定误报率(CFAR)检测器,然后被测单元的第二特征值经过CFAR检测器筛选出包含气象信号成分的像素。模拟以及实验结果被提出以证明理论分析并评估所提出的基于EVD的算法的检测性能。与大多数当前的 WSD 方法相比,所提出的基于 EVD 的方法确实显示出增强的检测能力和强大的鲁棒性。地杂波分量和高斯噪声都是复高斯分布,并且在统计上是独立的。在统计的基础上,还设计了恒定误报率(CFAR)检测器,然后被测单元的第二特征值经过CFAR检测器筛选出包含气象信号成分的像素。模拟以及实验结果被提出以证明理论分析并评估所提出的基于EVD的算法的检测性能。与大多数当前的 WSD 方法相比,所提出的基于 EVD 的方法确实显示出增强的检测能力和强大的鲁棒性。还设计了恒定误报率(CFAR)检测器,然后被测单元的第二特征值经过CFAR检测器筛选出包含气象信号成分的像素。模拟以及实验结果被提出以证明理论分析并评估所提出的基于EVD的算法的检测性能。与大多数当前的 WSD 方法相比,所提出的基于 EVD 的方法确实显示出增强的检测能力和强大的鲁棒性。还设计了恒定误报率(CFAR)检测器,然后被测单元的第二特征值经过CFAR检测器筛选出包含气象信号成分的像素。模拟以及实验结果被提出以证明理论分析并评估所提出的基于EVD的算法的检测性能。与大多数当前的 WSD 方法相比,所提出的基于 EVD 的方法确实显示出增强的检测能力和强大的鲁棒性。

更新日期:2021-06-15
down
wechat
bug