当前位置: X-MOL 学术J. Rare Earths › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gd2O3 nanoparticles modified g-C3N4 with enhanced photocatalysis activity for degradation of organic pollutants
Journal of Rare Earths ( IF 4.9 ) Pub Date : 2021-06-07 , DOI: 10.1016/j.jre.2021.06.002
Yipeng Zhou , Fanshan Zeng , Chaoyang Sun , Jun Wu , Yu Xie , Fayun Zhang , Senlin Rao , Fahui Wang , Jinbing Zhang , Jinsheng Zhao , Shiqian Li

Gd2O3 nanoparticles modified g-C3N4 photocatalytic composites were synthesized by a simple one-step hydrothermal method. The structure, morphology, optical properties of the prepared photocatalyst were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM) and X-ray photoelectron spectroscopy (XPS). The result demonstrates that gadolinium is mainly dispersed on the surface of g-C3N4 in the form of Gd2O3, and does not destroy the lattice structure of g-C3N4. Besides, the gadolinium can cause the red shift of the absorption edge of light, narrow the band gap, and increase the separation efficiency of the photogenerated electron and hole of g-C3N4. Especially, the specific surface area of g-C3N4 can be significantly increased. Furthermore, g-C3N4/Gd-0.05 displays the highest photodegradation performance when it is used for degradation of methyl orange (MO), methylene blue (MB) and Rhodamine B (RhB). The photodegradation rate of g-C3N4/Gd-0.05 composites is 72.4% for MO, 95.5% for RhB, 100% for MB after 120 min under visible light (λ > 420 nm) irradiation. Narrow band gap promotes the separation of photogenerated electron and hole, which enhances the photocatalytic activity of g-C3N4. It is noted that g-C3N4/Gd-0.05 exhibits excellent photocatalytic stability by the photocurrent and the cyclic photodegradation of MO.



中文翻译:

Gd2O3 纳米粒子修饰的 g-C3N4 具有增强的光催化降解有机污染物的活性

通过简单的一步水热法合成了Gd 2 O 3纳米颗粒修饰的gC 3 N 4光催化复合材料。通过X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、场发射透射电子显微镜(FETEM)和X射线光电子能谱(XPS)对制备的光催化剂的结构、形貌、光学性质进行了表征。结果表明,钆主要以Gd 2 O 3的形式分散在gC 3 N 4的表面,不破坏gC 3 N 4的晶格结构。. 此外,钆能引起光吸收边红移,缩小带隙,提高gC 3 N 4光生电子与空穴的分离效率。特别是,可以显着增加gC 3 N 4的比表面积。此外,gC 3 N 4 /Gd-0.05 用于降解甲基橙(MO)、亚甲蓝(MB)和罗丹明B(RhB)时显示出最高的光降解性能。gC 3 N 4 /Gd-0.05 复合材料在可见光 ( λ > 420 nm) 照射。窄带隙促进了光​​生电子和空穴的分离,从而增强了gC 3 N 4的光催化活性。值得注意的是,gC 3 N 4 /Gd-0.05 通过光电流和 MO 的循环光降解表现出优异的光催化稳定性。

更新日期:2021-06-07
down
wechat
bug