当前位置: X-MOL 学术J. Dyn. Diff. Equat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Uniform Submersion Theorem
Journal of Dynamics and Differential Equations ( IF 1.3 ) Pub Date : 2021-06-07 , DOI: 10.1007/s10884-021-10015-3
Mahesh Nerurkar

Given an n-dimensional, connected, analytic manifold M and analytic vector fields \(\{f_i\}_{i=0}^m\) on M consider the affine control process

$$\begin{aligned} {\xi }' = f_0(\xi ) + \sum \limits _{i = 1}^mu_if_i(\xi )\,. \end{aligned}$$(0.2)

Let \(t\rightarrow \xi _{x,\overline{u}}(t)\) be the solution curve satisfying the above differential equation with initial condition \(\xi (0) = x\) and \(\overline{u} = (u_1,u_2, \ldots ,u_m)\in W_T^m \equiv L^{\infty }([0,T],{\mathbb {R}}^m)\) is a control function. For a fixed \(x\in M\) and \(T>0\) consider the evaluation map \(E^x : W_T^m \rightarrow M : E^x(\overline{u}) = \xi _{x,\overline{u}}(T)\). Given a compact, semi-analytic set \(K\subset M\), we prove that, (Theorem 1.6), if the system satisfies SAP (strong accessibility property), at each \(x\in K\), then the set of control functions \(\overline{u}\in C^{\infty }([0,T],{\mathbb {R}}^m)\) at which the the map \(E^x\) is a submersion, (uniformly as x varies over K), is dense in the set \(C^\infty ([0,T],{\mathbb {R}}^m)\) of \(C^\infty \) control functions with the \(C^\infty \) topology. The proof of the uniform submersion theorem, uses a control theoretic notion of ‘detectability’ and is based on an important result, (Theorem 2.2), about existence and genericity of ‘universal detectors’.



中文翻译:

均匀浸没定理

给定一个Ñ维,连接,解析流形中号和分析矢量场\(\ {f_i \} _ {i = 0} ^ M \)中号考虑仿射控制处理

$$\begin{aligned} {\xi }' = f_0(\xi ) + \sum \limits _{i = 1}^mu_if_i(\xi )\,. \end{对齐}$$ (0.2)

\(t\rightarrow \xi _{x,\overline{u}}(t)\)为满足上述微分方程的解曲线,初始条件为\(\xi (0) = x\)\(\ overline{u} = (u_1,u_2, \ldots ,u_m)\in W_T^m \equiv L^{\infty }([0,T],{\mathbb {R}}^m)\)是一个控制功能。对于固定的\(x\in M\)\(T>0\)考虑评估图\(E^x : W_T^m \rightarrow M : E^x(\overline{u}) = \xi _ {x,\overline{u}}(T)\)。给定一个紧凑的半解析集\(K\subset M\),我们证明,(定理 1.6),如果系统满足 SAP(强可达性),在每个\(x\in K\),那么控制功能集\(\overline{u}\in C^{\infty }([0,T],{\mathbb {R}}^m)\)其中地图\(E^x\)是一个淹没, (随着xK 上的变化一致),在\(C^\infty \)控制函数的集合\(C^\infty ([0,T],{\mathbb {R}}^m)\)中是密集的与\(C^\infty \)拓扑。均匀淹没定理的证明使用了“可检测性”的控制理论概念,并基于一个重要的结果(定理 2.2),即关于“通用检测器”的存在性和通用性。

更新日期:2021-06-07
down
wechat
bug