当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Limits of quantum speed-ups for computational geometry and other problems: Fine-grained complexity via quantum walks
arXiv - CS - Computational Complexity Pub Date : 2021-06-03 , DOI: arxiv-2106.02005
Harry Buhrman, Bruno Loff, Subhasree Patro, Florian Speelman

Many computational problems are subject to a quantum speed-up: one might find that a problem having an O(n^3)-time or O(n^2)-time classic algorithm can be solved by a known O(n^1.5)-time or O(n)-time quantum algorithm. The question naturally arises: how much quantum speed-up is possible? The area of fine-grained complexity allows us to prove optimal lower-bounds on the complexity of various computational problems, based on the conjectured hardness of certain natural, well-studied problems. This theory has recently been extended to the quantum setting, in two independent papers by Buhrman, Patro, and Speelman (arXiv:1911.05686), and by Aaronson, Chia, Lin, Wang, and Zhang (arXiv:1911.01973). In this paper, we further extend the theory of fine-grained complexity to the quantum setting. A fundamental conjecture in the classical setting states that the 3SUM problem cannot be solved by (classical) algorithms in time O(n^{2-a}), for any a>0. We formulate an analogous conjecture, the Quantum-3SUM-Conjecture, which states that there exist no sublinear O(n^{1-b})-time quantum algorithms for the 3SUM problem. Based on the Quantum-3SUM-Conjecture, we show new lower-bounds on the time complexity of quantum algorithms for several computational problems. Most of our lower-bounds are optimal, in that they match known upper-bounds, and hence they imply tight limits on the quantum speedup that is possible for these problems.

中文翻译:

计算几何和其他问题的量子加速限制:通过量子游走的细粒度复杂性

许多计算问题都受到量子加速的影响:人们可能会发现具有 O(n^3) 时间或 O(n^2) 时间的经典算法的问题可以通过已知的 O(n^1.5 )-时间或 O(n)-时间量子算法。自然会出现一个问题:量子加速可能达到多少?细粒度复杂性区域使我们能够基于某些自然的、经过充分研究的问题的推测硬度,证明各种计算问题复杂性的最佳下限。该理论最近在 Buhrman、Patro 和 Speelman (arXiv:1911.05686) 以及 Aaronson、Chia、Lin、Wang 和 Zhang (arXiv:1911.01973) 的两篇独立论文中扩展到量子设置。在本文中,我们进一步将细粒度复杂性理论扩展到量子设置。经典设置中的一个基本猜想表明,对于任何 a>0,3SUM 问题都无法在时间为 O(n^{2-a}) 的(经典)算法中解决。我们制定了一个类似的猜想,即 Quantum-3SUM-Conjecture,它指出对于 3SUM 问题不存在次线性 O(n^{1-b}) 时间量子算法。基于 Quantum-3SUM 猜想,我们展示了几个计算问题的量子算法时间复杂度的新下限。我们的大多数下界都是最优的,因为它们与已知的上限相匹配,因此它们意味着对这些问题可能的量子加速有严格的限制。它指出对于 3SUM 问题不存在次线性 O(n^{1-b}) 时间量子算法。基于 Quantum-3SUM 猜想,我们展示了几个计算问题的量子算法时间复杂度的新下限。我们的大多数下界都是最优的,因为它们与已知的上限相匹配,因此它们意味着对这些问题可能的量子加速有严格的限制。它指出对于 3SUM 问题不存在次线性 O(n^{1-b}) 时间量子算法。基于 Quantum-3SUM 猜想,我们展示了几个计算问题的量子算法时间复杂度的新下限。我们的大多数下界都是最优的,因为它们与已知的上限相匹配,因此它们意味着对这些问题可能的量子加速有严格的限制。
更新日期:2021-06-04
down
wechat
bug