当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tunable anisotropic thermal transport in porous carbon foams: The role of phonon coupling
International Journal of Mechanical Sciences ( IF 7.3 ) Pub Date : 2021-06-05 , DOI: 10.1016/j.ijmecsci.2021.106576
Xue-Kun Chen , Xiao-Yan Hu , Peng Jia , Zhong-Xiang Xie , Jun Liu

Carbon foams (CFs) possess high storage capacity, good electronic conductivity and superb mechanical strength, which demonstrate promising applications in many engineering fields. Understanding thermal transport in CFs is critical for the design and reliability of functional electronic devices based on them. In this work, we systematically study anisotropic thermal transport in the CFs composed of sixfold-wing graphene nanoribbons by using equilibrium molecular dynamics simulations. The results showed that the remarkable anisotropic behavior reflecting geometric anisotropy can be attributed to the orientation-dependent group velocity of long wavelength phonons. Moreover, it is found that the anisotropic ratio could be effectively regulated by compress/tensile strains. Detailed spectral analysis revealed that the loading of strain would significantly modify the coupling level between the transverse and longitudinal vibrational modes, resulting in a change to the anisotropic ratio. For thermal management application, the interfacial thermal conductance (TBC) of CFs/silicon substrate is predicted to be about 35 MW/m2 K−1, which is comparable to the TBC of the transferred metal films on silicon or SiO2 substrates. Furthermore, the TBC could be further enhanced by increasing ambient temperature or external stress. Our results might provide guidance for the development of thermal interfacial materials and thermal channeling devices.



中文翻译:

多孔碳泡沫中可调的各向异性热传输:声子耦合的作用

碳泡沫 (CFs) 具有高存储容量、良好的电子导电性和优异的机械强度,在许多工程领域具有广阔的应用前景。了解 CF 中的热传输对于基于它们的功能性电子设备的设计和可靠性至关重要。在这项工作中,我们通过使用平衡分子动力学模拟系统地研究了由六翼石墨烯纳米带组成的 CF 中的各向异性热传输。结果表明,反映几何各向异性的显着各向异性行为可归因于长波长声子的取向相关群速度。此外,发现压缩/拉伸应变可以有效地调节各向异性比。详细的光谱分析表明,应变加载会显着改变横向和纵向振动模式之间的耦合水平,导致各向异性比发生变化。对于热管理应用,CFs/硅衬底的界面热导 (TBC) 预计约为 35 MW/m2 K -1,这与硅或SiO 2衬底上转移的金属膜的TBC相当。此外,可以通过增加环境温度或外部压力来进一步增强 TBC。我们的研究结果可能为热界面材料和热通道器件的开发提供指导。

更新日期:2021-06-05
down
wechat
bug