当前位置: X-MOL 学术Front. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Viscoelasticity imaging of biological tissues and single cells using shear wave propagation
Frontiers in Physics ( IF 3.1 ) Pub Date : 2021-06-04 , DOI: 10.3389/fphy.2021.666192
Hongliang Li , Guillaume Flé , Manish Bhatt , Zhen Qu , Sajad Ghazavi , Ladan Yazdani , Guillaume Bosio , Iman Rafati , Guy Cloutier

Changes in biomechanical properties of biological soft tissues are often associated with physiological dysfunctions. Since biological soft tissues are hydrated, viscoelasticity is likely suitable to represent its solid-like behavior using elasticity and fluid-like behavior using viscosity. Shear wave elastography is a non-invasive imaging technology invented for clinical applications that has shown promise to characterize various tissue viscoelasticity. It is based on measuring and analyzing velocities and attenuations of propagated shear waves. In this review, principles and technical developments of shear wave elastography for viscoelasticity characterization from organ to cellular levels are presented, and different imaging modalities used to track shear wave propagation are described. At a macroscopic scale, techniques for inducing shear waves using an external mechanical vibration, an acoustic radiation pressure or a Lorentz force are reviewed along with imaging approaches proposed to track shear wave propagation, namely ultrasound, magnetic resonance, optical, and photoacoustic means. Then, approaches for theoretical modeling and tracking of shear waves are detailed. Following it, some examples of applications to characterize the viscoelasticity of various organs are given. At a microscopic scale, a novel cellular shear wave elastography method using an external vibration and optical microscopy is illustrated. Finally, current limitations and future directions in shear wave elastography are presented.

中文翻译:

使用剪切波传播对生物组织和单细胞进行粘弹性成像

生物软组织的生物力学特性的变化通常与生理功能障碍有关。由于生物软组织是水合的,因此粘弹性很可能适合使用弹性来表示其类似固体的行为,并使用粘度来表示类似流体的行为。剪切波弹性成像是一种为临床应用而发明的非侵入性成像技术,已显示出表征各种组织粘弹性的前景。它基于测量和分析传播的剪切波的速度和衰减。在这篇综述中,介绍了用于从器官到细胞水平的粘弹性表征的剪切波弹性成像的原理和技术发展,并描述了用于跟踪剪切波传播的不同成像方式。在宏观尺度上,回顾了使用外部机械振动、声辐射压力或洛伦兹力诱导剪切波的技术以及用于跟踪剪切波传播的成像方法,即超声波、磁共振、光学和光声手段。然后,详细介绍了剪切波的理论建模和跟踪方法。接下来,给出了一些表征各种器官粘弹性的应用示例。在微观尺度上,说明了一种使用外部振动和光学显微镜的新型细胞剪切波弹性成像方法。最后,介绍了剪切波弹性成像的当前局限性和未来方向。回顾了声辐射压力或洛伦兹力以及为跟踪剪切波传播而提出的成像方法,即超声、磁共振、光学和光声方法。然后,详细介绍了剪切波的理论建模和跟踪方法。接下来,给出了一些表征各种器官粘弹性的应用示例。在微观尺度上,说明了一种使用外部振动和光学显微镜的新型细胞剪切波弹性成像方法。最后,介绍了剪切波弹性成像的当前局限性和未来方向。回顾了声辐射压力或洛伦兹力以及为跟踪剪切波传播而提出的成像方法,即超声、磁共振、光学和光声方法。然后,详细介绍了剪切波的理论建模和跟踪方法。接下来,给出了一些表征各种器官粘弹性的应用示例。在微观尺度上,说明了一种使用外部振动和光学显微镜的新型细胞剪切波弹性成像方法。最后,介绍了剪切波弹性成像的当前局限性和未来方向。给出了一些表征各种器官粘弹性的应用示例。在微观尺度上,说明了一种使用外部振动和光学显微镜的新型细胞剪切波弹性成像方法。最后,介绍了剪切波弹性成像的当前局限性和未来方向。给出了一些表征各种器官粘弹性的应用示例。在微观尺度上,说明了一种使用外部振动和光学显微镜的新型细胞剪切波弹性成像方法。最后,介绍了剪切波弹性成像的当前局限性和未来方向。
更新日期:2021-06-04
down
wechat
bug