当前位置: X-MOL 学术Planet. Space Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermodynamic modelling of ultra-high vacuum thermal decomposition for lunar resource processing
Planetary and Space Science ( IF 2.4 ) Pub Date : 2021-06-02 , DOI: 10.1016/j.pss.2021.105272
Matthew G. Shaw , Geoffrey A. Brooks , M. Akbar Rhamdhani , Alan R. Duffy , Mark I. Pownceby

This study presents a theoretical pathway to the production of sodium and potassium metal from lunar regolith at ambient lunar conditions via the selective thermal decomposition of oxides in the regolith using concentrated solar energy. The proposed process for the recovery of the products is systematically evaluated via thermodynamic modelling based on Gibbs energy minimalization using the FactSage software package. Initial modelling predicts that at ambient lunar pressures (10−15 ​atm), and assuming equilibrium conditions, a thermal decomposition process run at 800 ​°C, followed by a fractional deposition sequence with stage temperatures of 550 ​°C and −50 ​°C can result in the concentration of FeO in the first deposition and Na and K metal in the second deposition. These results support the feasibility of a thermal decomposition process for the beneficiation and reduction of mineral resources on the lunar surface.



中文翻译:

用于月球资源加工的超高真空热分解热力学模型

这项研究提出了一种理论途径,在月球环境条件下,通过使用集中太阳能对风化层中的氧化物进行选择性热分解,从月球风化层中生产钠和钾金属。使用 FactSage 软件包,通过基于 Gibbs 能量最小化的热力学模型系统地评估了所提议的产品回收过程。初始模型预测,在环境月球压力 (10 -15 atm),假设平衡条件,热分解过程在 800°C 下运行,然后是阶段温度为 550 °C 和 -50 °C 的分步沉积序列可以导致 FeO 的浓度在第一个在第二次沉积中沉积和 Na 和 K 金属。这些结果支持了在月球表面选矿和减少矿产资源的热分解过程的可行性。

更新日期:2021-06-14
down
wechat
bug