当前位置: X-MOL 学术Z. Angew. Math. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Second-order invariants of the inviscid Lundgren–Monin–Novikov equations for 2d vorticity fields
Zeitschrift für angewandte Mathematik und Physik ( IF 2 ) Pub Date : 2021-06-02 , DOI: 10.1007/s00033-021-01562-2
V. N. Grebenev , A. N. Grichkov , M. Oberlack , M. Wacławczyk

In Grebenev, Wacławczyk, Oberlack (2019 Phys A: Math. Theor. 52, 33), the conformal invariance (CI) of the characteristic \({\varvec{X}}_{1}(t)\) (the zero-vorticity Lagrangian path) of the first equation (i.e. for the evolution of the 1-point PDF \(f_1({\varvec{x}}_{1},\omega _{1},t)\), \({\varvec{x}}_{1} \in D_1 \subset {\mathbb {R}}^2)\) of the inviscid Lundgren–Monin–Novikov (LMN) equations for 2d vorticity fields was derived. The infinitesimal operator admitted by the characteristics equation generates an infinite-dimensional Lie pseudo-group G which conformally acts on \(D_1\). We define the conformal invariant differential form \(\mathrm{d}s^2 = f_1\cdot \left( {\mathrm{d}X_{1}^{ 1}}^2 + {\mathrm{d}X_{1}^{ 2}}^2\right) \) along the characteristic \(\left. {\varvec{X}}_{1}(t)\right| _{\omega _{1} = 0}\) together with the simple action functional \({\mathcal F}({\varvec{X}}_{1},\mathrm{d}s^2)\). We demonstrate that \(G_{{\mathcal {Y}}}\), which is a subgroup of the group G restricted on the variables \({\varvec{x}}_{1}\) and \(f_1\), gives rise to a symmetry transformations of \({\mathcal {F}}({\varvec{X}}_{1},\mathrm{d}s^2)\). With this, we calculate the second-order universal differential invariant \(J_2^{{\mathcal {Y}}}\) (or the multiscale representation of the invariants) of \(G_{{\mathcal {Y}}}\) under the action on the zero-vorticity characteristics. We show that \({{\mathcal {F}}}({\varvec{X}}_{1},\mathrm{d}s^2)\) is a scalar invariant and generates all differential invariants, which look like the quantities of different scales, from \(J_2^{{\mathcal {Y}}}\) by the operators of invariant differentiation. It gives insight into the geometry of a flow domain nearby point \({\varvec{x}}_{1}\) in the sense of Cartan.



中文翻译:

二维涡量场无粘性 Lundgren-Monin-Novikov 方程的二阶不变量

在 Grebenev, Wacławczyk, Oberlack (2019 Phys A: Math. Theor. 52, 33) 中,特征\({\varvec{X}}_{1}(t)\)(零-vorticity Lagrangian path) 的第一个方程(即对于 1-point PDF 的演化\(f_1({\varvec{x}}_{1},\omega _{1},t)\) , \( {\ varvec {X}} _ {1} \在D_1 \子集{\ mathbb {R}} ^ 2)\)的非粘性Lundgren的-莫宁-诺维科夫(LMN)方程2的d涡字段推导。特征方程所承认的无穷小算子产生一个无限维李伪群G,它共形作用于\(D_1\)。我们定义了共形不变微分形式\(\mathrm{d}s^2 = f_1\cdot \left( {\mathrm{d}X_{1}^{ 1}}^2 + {\mathrm{d}X_{1}^{ 2}} ^2\right) \)沿着特征\(\left. {\varvec{X}}_{1}(t)\right| _{\omega _{1} = 0}\)以及简单的动作功能\({\mathcal F}({\varvec{X}}_{1},\mathrm{d}s^2)\)。我们证明\(G_{{\mathcal {Y}}}\)G组的一个子群,它限制在变量\({\varvec{x}}_{1}\)\(f_1\ ),产生\({\mathcal {F}}({\varvec{X}}_{1},\mathrm{d}s^2)\)的对称变换。有了这个,我们计算二阶通用微分不变量\(J_2^{{\mathcal {Y}}}\)(或不变量的多尺度表示)\(G_{{\mathcal {Y}}}\)在零涡度特征的作用下。我们证明\({{\mathcal {F}}}({\varvec{X}}_{1},\mathrm{d}s^2)\)是一个标量不变量并生成所有微分不变量,看起来像不同尺度的量,来自\(J_2^{{\mathcal {Y}}}\)由不变微分的算子。它可以深入了解Cartan 意义上的点\({\varvec{x}}_{1}\)附近的流域的几何形状。

更新日期:2021-06-02
down
wechat
bug