当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Progress toward blue-emitting (460–475 nm) nanomaterials in display applications
Nanophotonics ( IF 7.5 ) Pub Date : 2021-05-01 , DOI: 10.1515/nanoph-2021-0053
Maksym F. Prodanov 1 , Valerii V. Vashchenko 1 , Abhishek K. Srivastava 1
Affiliation  

Recently, quantum dots (QD) and quantum rods (QRs) have become extremely popular in displays and lighting applications. Liquid crystal displays (LCDs) equipped with quantum dot enhancement films (QDEFs) offer extended color saturation, increasing said saturation from 60 to 70% to more than 100% of the NTSC color gamut. A plethora of research dealing with EL/PL properties and the device-based performance of these materials has been published. The tunable emission wavelength and the narrow emission bandwidth are the key features of quantum dots and perovskite nanoparticles that primarily depend on the nanoparticle size and material composition. QRs, in contrast, have a core–shell structure and emit polarized light that can roughly double the efficiency of modern displays. However, blue emission for QRs, because of the large bathochromic redshift during shell growth, is a serious problem. Besides photoluminescence, electroluminescence is also important for display applications. These QD-LEDs show a lower turn ON voltage in comparison to organic LEDs, which is very important for high-resolution displays. The solution-processed narrower emission QD-LEDs have already achieved efficiency and a brightness comparable to vacuum-deposited phosphorescent organic LEDs (OLEDs). However, the blue-emitting nanoparticles and their short operational lifetime are the key obstacles in the progression of these devices. Furthermore, recently the display and lighting industry are trying to reduce the short-wavelength emissions, particularly in the spectral region below 455 nm, which has a much greater impact on human ocular health and circadian rhythm. Thus, industries are aiming at blue light in the spectral range of 460–475 nm. This spectral range is very challenging for nanomaterials because of the limited choice of materials. In this review, we summarize the recent progress made in the blue-emitting nanomaterials with a different morphology and composition. This includes recent developments in low Cd materials. Both the PL and EL properties of these materials have been discussed depending on the NP’s shape and material composition. This review also aims to discuss the various device architectures employing blue-emitting NPs, any recent achievements and future challenges.

中文翻译:

显示应用中的蓝色发光(460-475 nm)纳米材料的进展

最近,量子点 (QD) 和量子棒 (QR) 在显示器和照明应用中变得非常流行。配备量子点增强膜 (QDEF) 的液晶显示器 (LCD) 可提供扩展的色彩饱和度,将所述饱和度从 NTSC 色域的 60% 增加到 70%,再增加到 100% 以上。已经发表了大量关于 EL/PL 特性和这些材料的基于设备的性能的研究。可调发射波长和窄发射带宽是量子点和钙钛矿纳米粒子的主要特征,主要取决于纳米粒子的尺寸和材料成分。相比之下,QR 具有核壳结构并发出偏振光,其效率大约可以使现代显示器的效率提高一倍。然而,QRs 的蓝色发射,由于壳生长过程中的大红移,是一个严重的问题。除了光致发光,电致发光对于显示应用也很重要。与有机 LED 相比,这些 QD-LED 显示出更低的开启电压,这对于高分辨率显示器非常重要。溶液处理的窄发射 QD-LED 已经实现了与真空沉积磷光有机 LED (OLED) 相当的效率和亮度。然而,蓝色发射纳米粒子及其短的使用寿命是这些设备发展的主要障碍。此外,最近显示和照明行业正试图减少短波辐射,特别是在 455 nm 以下的光谱区域,这对人类眼部健康和昼夜节律有更大的影响。因此,工业的目标是 460-475 nm 光谱范围内的蓝光。由于材料的选择有限,这个光谱范围对于纳米材料来说非常具有挑战性。在这篇综述中,我们总结了具有不同形态和成分的蓝色发光纳米材料的最新进展。这包括最近在低 Cd 材料方面的发展。这些材料的 PL 和 EL 特性已经根据 NP 的形状和材料成分进行了讨论。本综述还旨在讨论采用蓝色发光 NP 的各种器件架构、任何最近的成就和未来的挑战。我们总结了具有不同形态和成分的蓝色发光纳米材料的最新进展。这包括最近在低 Cd 材料方面的发展。这些材料的 PL 和 EL 特性已经根据 NP 的形状和材料成分进行了讨论。本综述还旨在讨论采用蓝色发光 NP 的各种器件架构、任何最近的成就和未来的挑战。我们总结了具有不同形态和成分的蓝色发光纳米材料的最新进展。这包括最近在低 Cd 材料方面的发展。这些材料的 PL 和 EL 特性已经根据 NP 的形状和材料成分进行了讨论。本综述还旨在讨论采用蓝色发光 NP 的各种器件架构、任何最近的成就和未来的挑战。
更新日期:2021-06-02
down
wechat
bug