当前位置: X-MOL 学术Front. Earth Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of local and non-local closure PBL schemes on the simulation of Super Typhoon Mangkhut (2018)
Frontiers of Earth Science ( IF 2 ) Pub Date : 2021-06-01 , DOI: 10.1007/s11707-020-0854-9
Zixi Ruan , Jiangnan Li , Fangzhou Li , Wenshi Lin

With the convection-permitting simulation of Super Typhoon Mangkhut (2018) with a 3 km resolution for 10.5 days using mesoscale numerical model, Weather Research and Forecasting Model Version 4.1 (WRFV4.1), the influences of local closure QNSE planetary boundary layer (PBL) scheme and non-local closure GFS planetary boundary layer scheme on super typhoon Mangkhut are mainly discussed. It is found that in terms of either track or intensity of typhoon, the local closure QNSE scheme is better than the non-local closure GFS scheme. Local and non-local closure PBL schemes have a large influence on both the intensity and the structure of typhoon. The maximum intensity difference of the simulated typhoon is 50 hPa. The intensity of typhoon is closely related to its variations in structure. In the rapid intensification stage, the typhoon simulated by the QNSE scheme has a larger friction velocity, stronger surface latent heat flux, sensible heat flux and vapor flux, related to a higher boundary height and stronger vertical mixing. The latent heat flux and sensible heat flux on the surface conveyed energy upward for the typhoon while the water vapor was transported upward through vertical mixing. While the water vapor condensed, the latent heat was released, which further warmed the typhoon eyewall, strengthening the convection. The stronger winds also intensified the vertical mixing and the warm-core structure, further strengthened the typhoon. The differences in surface layer schemes dominated the differences between the two simulations.



中文翻译:

局部和非局部闭合PBL方案对超级台风山竹(2018)模拟的影响

使用中尺度数值模型、天气研究和预测模型版本 4.1 (WRFV4.1) 对 3 公里分辨率的超级台风山竹 (2018) 进行允许对流模拟,持续 10.5 天,局部闭合 QNSE 行星边界层 (PBL) 的影响) 方案和非局部闭合 GFS 行星边界层方案在超强台风山竹上进行了讨论。发现无论是在台风路径还是强度方面,局部封闭QNSE方案都优于非局部封闭GFS方案。局部和非局部闭合PBL方案对台风的强度和结构都有很大的影响。模拟台风的最大强度差为50 hPa。台风的强度与其结构的变化密切相关。在快速集约化阶段,QNSE方案模拟的台风摩擦速度更大,地表潜热通量、感热通量和水蒸气通量更强,这与更高的边界高度和更强的垂直混合有关。地表潜热通量和感热通量为台风向上输送能量,而水汽通过垂直混合向上输送。在水蒸气凝结的同时,潜热被释放出来,进一步使台风眼墙变暖,加强了对流。强风也加剧了垂直混合和暖核结构,进一步加强了台风。表面层方案的差异主导了两种模拟之间的差异。与更高的边界高度和更强的垂直混合有关。地表潜热通量和感热通量为台风向上输送能量,而水汽通过垂直混合向上输送。在水蒸气凝结的同时,潜热被释放出来,进一步使台风眼墙变暖,加强了对流。强风也加剧了垂直混合和暖核结构,进一步加强了台风。表面层方案的差异主导了两种模拟之间的差异。与更高的边界高度和更强的垂直混合有关。地表潜热通量和感热通量为台风向上输送能量,而水汽通过垂直混合向上输送。在水蒸气凝结的同时,潜热被释放出来,进一步使台风眼墙变暖,加强了对流。强风也加剧了垂直混合和暖核结构,进一步加强了台风。表面层方案的差异主导了两种模拟之间的差异。这进一步加热了台风眼墙,加强了对流。强风也加剧了垂直混合和暖核结构,进一步加强了台风。表面层方案的差异主导了两种模拟之间的差异。这进一步加热了台风眼墙,加强了对流。强风也加剧了垂直混合和暖核结构,进一步加强了台风。表面层方案的差异主导了两种模拟之间的差异。

更新日期:2021-06-01
down
wechat
bug