当前位置: X-MOL 学术Energy Explor. Exploit. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Voltage controller with energy management unit for microgrid with hybrid sources
Energy Exploration & Exploitation ( IF 2.7 ) Pub Date : 2021-06-01 , DOI: 10.1177/01445987211015392
Sheeba Babu 1 , L Ashok Kumar 1
Affiliation  

An unprecedented year has past with Covid-19 lockdown. It has underscored the importance of reliable and uninterrupted power supply. Microgrid ensures reliability and continuity of power supply in a local region with its own local generation and load despatch system, thereby reducing or eliminating the need of a central generator. A microgrid is capable of autonomous operation or it can be connected to a central ac grid that it separates from during disturbances. In this paper results of a microgrid simulation model is presented. Here microgrid system uses two renewable sources namely, solar PV and wind generator along with a battery feeding an inverter supplying load. The system is modeled and implemented using Matlab/simulink environment. The simulation model consists of mono-crystalline solar PV panel of 2.5 kW and a wind turbine emulator having PMDC as wind generator of 1 kW rating as micro sources. For stabilisation of the system a battery bank of 48 V, 100 Ah is also provided. The system is designed to supply a maximum load of 2.5 kW. The system autonomy is approximately two hours for rated load of 2.5 kW. Stability of the system was tested during load variations. The voltage and frequency were found to be stable during load variations. The performance of the inverter to provide constant output voltage of 400 V is good and the output frequency of the inverter is also maintained at 50 Hz. The output voltage conforms to IEC 60038 Standards. An energy management scheme is also developed and simulation results show effectiveness of the scheme.



中文翻译:

带能量管理单元的电压控制器,用于混合电源微电网

随着 Covid-19 的封锁,前所未有的一年过去了。它强调了可靠和不间断电源的重要性。微电网通过自己的本地发电和负载调度系统确保当地电力供应的可靠性和连续性,从而减少或消除对中央发电机的需求。微电网能够自主运行,或者它可以连接到在干扰期间与它分开的中央交流电网。本文介绍了微电网仿真模型的结果。在这里,微电网系统使用两种可再生能源,即太阳能光伏和风力发电机,以及为逆变器供电的电池供电负载。该系统是使用 Matlab/simulink 环境建模和实现的。仿真模型由2块单晶太阳能光伏板组成。5 kW 和具有 PMDC 作为风力发电机的 1 kW 额定功率的风力涡轮机模拟器作为微源。为了稳定系统,还提供了 48 V、100 Ah 的电池组。该系统旨在提供 2.5 kW 的最大负载。对于 2.5 kW 的额定负载,系统自主性约为 2 小时。在负载变化期间测试系统的稳定性。发现电压和频率在负载变化期间是稳定的。逆变器提供400V恒定输出电压的性能良好,逆变器的输出频率也保持在50Hz。输出电压符合 IEC 60038 标准。还开发了能源管理方案,仿真结果表明了该方案的有效性。为了稳定系统,还提供了 48 V、100 Ah 的电池组。该系统旨在提供 2.5 kW 的最大负载。对于 2.5 kW 的额定负载,系统自主性约为 2 小时。在负载变化期间测试系统的稳定性。发现电压和频率在负载变化期间是稳定的。逆变器提供400V恒定输出电压的性能良好,逆变器的输出频率也保持在50Hz。输出电压符合 IEC 60038 标准。还开发了能源管理方案,仿真结果表明了该方案的有效性。为了稳定系统,还提供了 48 V、100 Ah 的电池组。该系统旨在提供 2.5 kW 的最大负载。对于 2.5 kW 的额定负载,系统自主性约为 2 小时。在负载变化期间测试系统的稳定性。发现电压和频率在负载变化期间是稳定的。逆变器提供400V恒定输出电压的性能良好,逆变器的输出频率也保持在50Hz。输出电压符合 IEC 60038 标准。还开发了能源管理方案,仿真结果表明了该方案的有效性。在负载变化期间测试系统的稳定性。发现电压和频率在负载变化期间是稳定的。逆变器提供400V恒定输出电压的性能良好,逆变器的输出频率也保持在50Hz。输出电压符合 IEC 60038 标准。还开发了能源管理方案,仿真结果表明了该方案的有效性。在负载变化期间测试系统的稳定性。发现电压和频率在负载变化期间是稳定的。逆变器提供400V恒定输出电压的性能良好,逆变器的输出频率也保持在50Hz。输出电压符合 IEC 60038 标准。还开发了能源管理方案,仿真结果表明了该方案的有效性。

更新日期:2021-06-01
down
wechat
bug