当前位置: X-MOL 学术Int. J. Fatigue › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fatigue behaviors of graphene reinforcing concrete composites under compression
International Journal of Fatigue ( IF 6 ) Pub Date : 2021-05-31 , DOI: 10.1016/j.ijfatigue.2021.106354
Linwei Li , Qiaofeng Zheng , Baoguo Han , Jinping Ou

This paper first studies the fatigue behaviors of multi-layer graphene (MLG) reinforcing reactive powder concrete (RPC) under compressive loads. It provides experimental results including fatigue life, fatigue deformation development, damage index and energy absorption, investigates temperature difference inside concrete composites by monitoring hydration temperature at different locations, and studies micro-structures of internal weakness of RPC via Scanning Electron Microscope (SEM), Energy-Dispersive Spectroscopy (EDS) and Digital Image Processing (DIP) method. The results show that, incorporation of MLG significantly reduces internal weakness of RPC. Specifically, MLG decreases temperature difference and thermal stress inside concrete composites, refines harmful pores in fatigue cracking zone (diameter above 100 nm), and stabilizes chemical composition of interfacial transition zone. By bridging micro-cracks and bonding with hardened cement matrix, the sheet-formed MLG slows down the generation of microcracks at creep-fatigue coupling stage, delays the start of fatigue stage, and increases fatigue failure strain. Consequently, even at 0.075 wt% MLG content, the fatigue life, energy absorption, and damage index of RPC are increased up to 49.3% (in terms of logarithm), 333.1%, and 22.23%, respectively. In addition, based on strain increase per circle at the creep-fatigue coupling stage, a fatigue life prediction equation is derived, which provides an approach to estimating the fatigue reliability of the structures using this composite.



中文翻译:

石墨烯增强混凝土复合材料受压疲劳行为

本文首先研究了多层石墨烯(MLG)增强反应性粉末混凝土(RPC)在压缩载荷下的疲劳行为。它提供疲劳寿命、疲劳变形发展、损伤指数和能量吸收等实验结果,通过监测不同位置的水化温度来研究混凝土复合材料内部的温差,并通过扫描电子显微镜(SEM)研究RPC内部弱点的微观结构,能量色散光谱 (EDS) 和数字图像处理 (DIP) 方法。结果表明,MLG的加入显着减少了RPC的内部弱点。具体而言,MLG降低了混凝土复合材料内部的温差和热应力,细化了疲劳开裂区(直径100纳米以上)的有害气孔,并稳定界面过渡区的化学成分。通过桥接微裂纹并与硬化水泥基体结合,片状 MLG 减缓了蠕变疲劳耦合阶段微裂纹的产生,延迟了疲劳阶段的开始,并增加了疲劳破坏应变。因此,即使在 0.075 wt% 的 MLG 含量下,RPC 的疲劳寿命、能量吸收和损伤指数也分别增加了 49.3%(以对数计算)、333.1% 和 22.23%。此外,基于蠕变-疲劳耦合阶段每圈的应变增加,推导了疲劳寿命预测方程,为估计使用该复合材料的结构的疲劳可靠性提供了一种方法。片状 MLG 减缓了蠕变疲劳耦合阶段微裂纹的产生,延迟了疲劳阶段的开始,增加了疲劳失效应变。因此,即使在 0.075 wt% 的 MLG 含量下,RPC 的疲劳寿命、能量吸收和损伤指数也分别增加了 49.3%(以对数计算)、333.1% 和 22.23%。此外,基于蠕变-疲劳耦合阶段每圈的应变增加,推导了疲劳寿命预测方程,为估计使用该复合材料的结构的疲劳可靠性提供了一种方法。片状 MLG 减缓了蠕变疲劳耦合阶段微裂纹的产生,延迟了疲劳阶段的开始,增加了疲劳失效应变。因此,即使在 0.075 wt% 的 MLG 含量下,RPC 的疲劳寿命、能量吸收和损伤指数也分别增加了 49.3%(以对数计算)、333.1% 和 22.23%。此外,基于蠕变-疲劳耦合阶段每圈的应变增加,推导了疲劳寿命预测方程,为估计使用该复合材料的结构的疲劳可靠性提供了一种方法。RPC 的损伤指数和损伤指数分别提高了 49.3%(以对数计算)、333.1% 和 22.23%。此外,基于蠕变-疲劳耦合阶段每圈的应变增加,推导了疲劳寿命预测方程,为估计使用该复合材料的结构的疲劳可靠性提供了一种方法。RPC 的损伤指数和损伤指数分别提高了 49.3%(以对数计算)、333.1% 和 22.23%。此外,基于蠕变-疲劳耦合阶段每圈的应变增加,推导了疲劳寿命预测方程,为估计使用该复合材料的结构的疲劳可靠性提供了一种方法。

更新日期:2021-06-03
down
wechat
bug