当前位置: X-MOL 学术Wave Motion › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hyperbolicity of velocity–stress–electromagnetic field equations for waves in anisotropic magnetoelectroelastic solids with hexagonal symmetry
Wave Motion ( IF 2.4 ) Pub Date : 2021-05-29 , DOI: 10.1016/j.wavemoti.2021.102767
Grzegorz Dziatkiewicz

This paper reports on a theoretical framework to analyse coupled wave propagation in magnetoelectroelastic solids of hexagonal symmetry. The constitutive equations contain the effective properties of micromechanics to model piezoelectric–piezomagnetic composites. The Mori–Tanaka scheme is used. The governing equations include the elastodynamic equations of motions and unique forms of the Maxwell equations for electromagnetics. The result is a set of fifteen first-order, fully coupled, hyperbolic partial differential equations with velocities, elastic stress components, and electromagnetic fields as the unknowns and as the components of the state vector. The structural analysis of the introduced equation set is performed, and the hyperbolicity is formally proved. The physics of coupled acoustic–electromagnetic wave propagation are fully described by the eigenstructure of matrices included in the considered system of equations. In particular, the eigenvalues of the main matrix pencil are the wave speeds, and a part of the left eigenvectors represents the coupled-wave polarization. The spectrum of the main matrix pencil shows the two-scale structure with the gap between mainly electromagnetic and mainly acoustic coupled modes. The analysis of the two-scale system dynamics is also performed. The small parameter is identified, and the slow–fast decomposition is obtained. The slow subsystem in the two-time-scale model is identified as the so-called quasi-static approximation of the magnetoelectroelastic continuum dynamics.



中文翻译:

具有六边形对称性的各向异性磁电弹性固体中波的速度-应力-电磁场方程的双曲性

本文报告了分析六边形对称磁电弹性固体中耦合波传播的理论框架。本构方程包含微力学的有效特性,可以模拟压电-压电复合材料。使用 Mori-Tanaka 方案。控制方程包括运动的弹性动力学方程和电磁学麦克斯韦方程的独特形式。结果是一组 15 个一阶、完全耦合、双曲偏微分方程,其中速度、弹性应力分量和电磁场作为未知数和状态向量的分量。对引入的方程组进行结构分析,并正式证明了双曲性。耦合声-电磁波传播的物理特性完全由包含在所考虑的方程组中的矩阵的本征结构来描述。特别是主矩阵pen的特征值是波速,左特征向量的一部分代表耦合波极化。主矩阵铅笔的频谱显示了两尺度结构,主要是电磁耦合模式和主要声学耦合模式之间的差距。还进行了两尺度系统动力学的分析。确定小参数,得到慢-快分解。两个时间尺度模型中的慢子系统被识别为磁电弹性连续介质动力学的所谓准静态近似。其中,主矩阵pen的特征值是波速,部分左特征向量代表耦合波极化。主矩阵铅笔的频谱显示了两尺度结构,主要是电磁耦合模式和主要声学耦合模式之间的差距。还进行了两尺度系统动力学的分析。确定小参数,得到慢-快分解。两个时间尺度模型中的慢子系统被识别为磁电弹性连续介质动力学的所谓准静态近似。特别是主矩阵pen的特征值是波速,左特征向量的一部分代表耦合波极化。主矩阵铅笔的频谱显示了两尺度结构,主要是电磁耦合模式和主要声学耦合模式之间的差距。还进行了两尺度系统动力学的分析。确定小参数,得到慢-快分解。两个时间尺度模型中的慢子系统被识别为磁电弹性连续介质动力学的所谓准静态近似。主矩阵铅笔的频谱显示了两尺度结构,主要是电磁耦合模式和主要声学耦合模式之间的差距。还进行了两尺度系统动力学的分析。确定小参数,得到慢-快分解。两个时间尺度模型中的慢子系统被识别为磁电弹性连续介质动力学的所谓准静态近似。主矩阵铅笔的频谱显示了两尺度结构,主要是电磁耦合模式和主要声学耦合模式之间的差距。还进行了两尺度系统动力学的分析。确定小参数,得到慢-快分解。两个时间尺度模型中的慢子系统被识别为磁电弹性连续介质动力学的所谓准静态近似。

更新日期:2021-06-04
down
wechat
bug