当前位置: X-MOL 学术Bull. Seismol. Soc. Am. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Global Navigational Satellite System Seismic Monitoring
Bulletin of the Seismological Society of America ( IF 3 ) Pub Date : 2021-06-01 , DOI: 10.1785/0120200356
Timothy I. Melbourne 1 , Walter M. Szeliga 1 , Victor Marcelo Santillan 1 , Craig W. Scrivner 1
Affiliation  

We have developed a global earthquake deformation monitoring system based on subsecond‐latency measurements from ∼2000 existing Global Navigational Satellite System (GNSS) receivers to rapidly characterize large earthquakes and tsunami. The first of its kind, this system complements traditional seismic monitoring by enabling earthquake moment release and, where station density permits, fault‐slip distribution, including tsunamigenic slow slip, to be quantified as rupture evolves. Precise point position time series from globally distributed GNSS stations are continuously estimated within an Earth center of mass‐fixed reference frame and streamed as local north, east, and vertical coordinates with 1 s updates and global subsecond receiver‐to‐positions latency. Continuous waveforms are made available via messaging exchanges to third‐party users (U.S. Geological Survey, National Oceanic and Atmospheric Administration, network operators, etc.) and internally filtered to trigger coseismic offset estimation that drive downstream point‐source and finite‐fault magnitude and slip characterization algorithms. We have implemented a corresponding analytics system to capture ∼100 million positions generated per day per thousand global stations positioned. Assessed over one typical week using 1270 globally distributed stations, the latency of position generation at a central analysis center from time of data acquisition in the field averages 0.52 s and is largely independent of station distance. Position variances from nominal in north, east, and vertical average 8, 9, and 12 cm, respectively, predominantly caused by random‐walk noise peaking in a ∼4–5min spectral band introduced by global satellite clock corrections. Solutions completeness over the week within 0.5, 1, and 2 s latency is 55%, 90%, and 99%, respectively. This GNSS analysis platform is readily scalable, allowing the accelerating proliferation of low‐cost phase‐tracking GNSS receivers, including those increasingly embedded in consumer devices such as smartphones, to offer a new means of characterizing large earthquakes and tsunami far more quickly than existing systems allow.

中文翻译:

全球导航卫星系统地震监测

我们开发了一个基于亚秒级延迟测量的全球地震变形监测系统,这些测量来自 2000 个现有的全球导航卫星系统 (GNSS) 接收器,以快速表征大地震和海啸。该系统是同类系统中的第一个,通过启用地震矩释放来补充传统的地震监测,并且在台站密度允许的情况下,断层滑动分布,包括海啸缓慢滑动,可以随着破裂的发展进行量化。来自全球分布的 GNSS 站的精确点位置时间序列在地球质心固定参考系内连续估计,并作为本地北、东和垂直坐标传输,具有 1 秒更新和全球亚秒级接收器到位置延迟。连续波形可通过消息交换提供给第三方用户(美国 地质调查局、国家海洋和大气管理局、网络运营商等)并在内部过滤以触发同震偏移估计,从而驱动下游点源和有限断层震级和滑动表征算法。我们已经实施了相应的分析系统,以捕获每天每千个全球站点生成的约 1 亿个位置。使用 1270 个分布在全球的站点对一个典型的一周进行评估,从现场数据采集到中央分析中心位置生成的延迟平均为 0.52 秒,并且在很大程度上与站点距离无关。北、东和垂直平均位置与名义位置的差异分别为 8、9 和 12 厘米,主要是由全球卫星时钟校正引入的~4-5 分钟频谱带中的随机游走噪声峰值引起的。在 0.5、1 和 2 秒延迟内的一周内解决方案完整性分别为 55%、90% 和 99%。该 GNSS 分析平台易于扩展,允许低成本相位跟踪 GNSS 接收器的加速普及,包括越来越多地嵌入智能手机等消费设备中的接收器,从而提供一种比现有系统更快地表征大地震和海啸的新方法允许。
更新日期:2021-05-28
down
wechat
bug