当前位置: X-MOL 学术Bull. Seismol. Soc. Am. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Study on the Largest Hydraulic Fracturing Induced Earthquake in Canada: Numerical Modeling and Triggering Mechanism
Bulletin of the Seismological Society of America ( IF 3 ) Pub Date : 2021-06-01 , DOI: 10.1785/0120200251
Bei Wang 1, 2 , Alessandro Verdecchia 3 , Honn Kao 1, 2 , Rebecca M. Harrington 4 , Yajing Liu 3 , Hongyu Yu 2
Affiliation  

The Mw 4.6 earthquake that occurred on 17 August 2015 northwest of Fort St. John, British Columbia, is considered the largest hydraulic‐fracturing‐induced event in Canada, based on its spatiotemporal relationship with respect to nearby injection operations. There is a ∼5 day delay of this Mw 4.6 mainshock from the onset of fluid injection at the closest well pad (W1). In contrast, other two nearby injection wells (W2 and W3) have almost instantaneous seismic responses. In this study, we first take a forward numerical approach to investigate the causative mechanisms for the Mw 4.6 event. Specifically, three finite‐element 3D poroelastic models of various permeability structures and presence or absence of hydraulic conduits are constructed, to calculate the coupled evolution of elastic stress and pore pressure caused by multistage fluid injections. Our simulation results suggest that pore pressure increase associated with the migration of injected fluid is required to accumulate sufficient stress perturbations to trigger this Mw 4.6 earthquake. In contrast, the elastic stress perturbation caused by rock matrix deformation alone is not the main cause. Furthermore, injection and seismicity at W1 may have altered the local stress field and brought local faults closer to failure at sites W2 and W3. This process could probably shorten the seismic response time and, thus, explain the observed simultaneous appearance of injection and induced seismicity at W2 and W3.

中文翻译:

加拿大最大水力压裂诱发地震的数值模拟及触发机制研究

2015 年 8 月 17 日发生在不列颠哥伦比亚省圣约翰堡西北部的 Mw 4.6 地震,根据其与附近注入作业的时空关系,被认为是加拿大最大的水力压裂诱发事件。从最近的井场 (W1) 开始注入流体,这个 Mw 4.6 的主震有大约 5 天的延迟。相比之下,附近的另外两个注入井(W2 和 W3)几乎具有瞬时地震响应。在这项研究中,我们首先采用正向数值方法来研究 Mw 4.6 事件的成因机制。具体而言,构建了不同渗透性结构和是否存在液压管道的三个有限元 3D 多孔弹性模型,以计算由多级流体注入引起的弹性应力和孔隙压力的耦合演化。我们的模拟结果表明,与注入流体的迁移相关的孔隙压力增加需要积累足够的应力扰动来触发这次 Mw 4.6 地震。相比之下,仅由岩石基质变形引起的弹性应力扰动并不是主要原因。此外,W1 的注入和地震活动可能改变了局部应力场,并使局部断层更接近 W2 和 W3 站点的破坏。这个过程可能会缩短地震响应时间,从而解释在 W2 和 W3 观察到的注入和诱发地震活动的同时出现。仅由岩石基质变形引起的弹性应力扰动并不是主要原因。此外,W1 的注入和地震活动可能改变了局部应力场,并使局部断层更接近 W2 和 W3 站点的破坏。这个过程可能会缩短地震响应时间,从而解释在 W2 和 W3 观察到的注入和诱发地震活动的同时出现。仅由岩石基质变形引起的弹性应力扰动并不是主要原因。此外,W1 的注入和地震活动可能改变了局部应力场,并使局部断层更接近 W2 和 W3 站点的破坏。这个过程可能会缩短地震响应时间,从而解释在 W2 和 W3 观察到的注入和诱发地震活动的同时出现。
更新日期:2021-05-28
down
wechat
bug