当前位置: X-MOL 学术Rev. Sci. Instrum. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and development of a compact ion implanter and plasma diagnosis facility based on a 2.45 GHz microwave ion source
Review of Scientific Instruments ( IF 1.6 ) Pub Date : 2021-05-25 , DOI: 10.1063/5.0029629
Ram Swaroop 1 , Narender Kumar 2 , G Rodrigues 3 , D Kanjilal 3 , I Banerjee 4 , S K Mahapatra 1
Affiliation  

A project on developing a 2.45 GHz microwave ion source based compact ion implanter and plasma diagnostic facility has been taken up by the Central University of Punjab, Bathinda. It consists of a double-wall ECR plasma cavity, a four-step ridge waveguide, an extraction system, and an experimental beam chamber. The mechanical design has been carried out in such a way that both types of experiments, plasma diagnosis and ion implantation, can be easily accommodated simultaneously and separately. To optimize microwave coupling to the ECR plasma cavity, a four-step ridge waveguide is designed. Microwave coupling simulation for the ECR plasma cavity has been performed at different power inputs using COMSOL Multiphysics. An enhanced electric field profile has been obtained at the center of the ECR plasma cavity with the help of a four-step ridge waveguide compared to the WR284 waveguide. The magnetic field distribution for two magnetic rings and the extraction system’s focusing properties have been simulated using the computer simulation technique. A tunable axial magnetic field profile has been obtained with a two permanent magnetic ring arrangement. The dependency of the beam emittance and beam current on accelerating voltages up to 50 kV has been simulated with different ions. It shows that ion masses have a great impact on the beam emittance and output current. This facility has provision for in situ plasma diagnosis using a Langmuir probe and optical emission spectroscopy setups. This system will be used for ion implantation, surface patterning, and studies of basic plasma sciences.

中文翻译:

基于2.45 GHz微波离子源的紧凑型离子注入机和等离子体诊断设备的设计与开发

巴辛达旁遮普中央大学已着手开发基于 2.45 GHz 微波离子源的紧凑型离子注入机和等离子体诊断设备的项目。它由双壁 ECR 等离子体腔、四阶脊形波导、提取系统和实验束室组成。机械设计以这样一种方式进行,即等离子体诊断和离子注入这两种类型的实验可以很容易地同时和分开进行。为了优化与 ECR 等离子体腔的微波耦合,设计了一个四阶脊形波导。已使用 COMSOL Multiphysics 在不同功率输入下对 ECR 等离子体腔进行微波耦合仿真。与 WR284 波导相比,在四阶脊形波导的帮助下,在 ECR 等离子体腔的中心获得了增强的电场分布。使用计算机模拟技术模拟了两个磁环的磁场分布和提取系统的聚焦特性。已通过两个永磁环布置获得了可调轴向磁场分布。已经用不同的离子模拟了射束发射率和射束电流对高达 50 kV 的加速电压的依赖性。这表明离子质量对束流发射率和输出电流有很大影响。该设施提供 使用计算机模拟技术模拟了两个磁环的磁场分布和提取系统的聚焦特性。利用两个永磁环装置获得了可调节的轴向磁场分布。已经用不同的离子模拟了射束发射率和射束电流对高达 50 kV 的加速电压的依赖性。这表明离子质量对束流发射率和输出电流有很大影响。该设施提供 使用计算机模拟技术模拟了两个磁环的磁场分布和提取系统的聚焦特性。利用两个永磁环装置获得了可调节的轴向磁场分布。已经用不同的离子模拟了射束发射率和射束电流对高达 50 kV 的加速电压的依赖性。这表明离子质量对束流发射率和输出电流有很大影响。该设施提供 这表明离子质量对束流发射率和输出电流有很大影响。该设施提供 这表明离子质量对束流发射率和输出电流有很大影响。该设施已为使用朗缪尔探针和光学发射光谱装置进行原位等离子体诊断。该系统将用于离子注入、表面图案化和基础等离子体科学的研究。
更新日期:2021-05-28
down
wechat
bug