当前位置: X-MOL 学术Rev. Sci. Instrum. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
System-on-chip upgrade of millimeter-wave imaging diagnostics for fusion plasma
Review of Scientific Instruments ( IF 1.6 ) Pub Date : 2021-05-10 , DOI: 10.1063/5.0040449
Y Zhu 1 , J-H Yu 1 , G Yu 1 , Y Ye 1 , Y Chen 1 , B Tobias 2 , A Diallo 3 , G Kramer 3 , Y Ren 3 , W Tang 3 , G Dong 3 , R Churchill 3 , C W Domier 1 , X Li 4 , C Luo 1 , M Chen 1 , N C Luhmann 1
Affiliation  

Monolithic, millimeter wave “system-on-chip” technology has been employed in chip heterodyne radiometers in a newly developed Electron Cyclotron Emission Imaging (ECEI) system on the DIII-D tokamak for 2D electron temperature and fluctuation diagnostics. The system employs 20 horn-waveguide receiver modules each with customized W-band (75–110 GHz) monolithic microwave integrated circuit chips comprising a W-band low noise amplifier, a balanced mixer, a ×2 local oscillator (LO) frequency doubler, and two intermediate frequency amplifier stages in each module. Compared to previous quasi-optical ECEI arrays with Schottky mixer diodes mounted on planar antennas, the upgraded W-band array exhibits >30 dB additional gain and 20× improvement in noise temperature; an internal eight times multiplier chain is used to provide LO coupling, thereby eliminating the need for quasi-optical coupling. The horn-waveguide shielding housing avoids out-of-band noise interference on each module. The upgraded ECEI system plays an important role for absolute electron temperature and fluctuation measurements for edge and core region transport physics studies. An F-band receiver chip (up to 140 GHz) is under development for additional fusion facilities with a higher toroidal magnetic field. Visualization diagnostics provide multi-scale and multi-dimensional data in plasma profile evolution. A significant aspect of imaging measurement is focusing on artificial intelligence for science applications.

中文翻译:

聚变等离子体毫米波成像诊断的片上系统升级

新开发的 DIII-D 托卡马克电子回旋辐射成像 (ECEI) 系统中的芯片外差辐射计采用了单片毫米波“片上系统”技术,用于二维电子温度和波动诊断。该系统采用 20 个喇叭波导接收模块,每个模块都带有定制的 W 波段 (75-110 GHz) 单片微波集成电路芯片,包括 W 波段低噪声放大器、平衡混频器、×2 本机振荡器 (LO) 倍频器、每个模块中有两个中频放大器级。与之前在平面天线上安装肖特基混频器二极管的准光学 ECEI 阵列相比,升级后的 W 波段阵列具有 >30 dB 的额外增益和 20 倍的噪声温度改善;内部八倍乘法器链用于提供 LO 耦合,从而消除了对准光耦合的需求。喇叭波导屏蔽外壳避免了每个模块上的带外噪声干扰。升级后的 ECEI 系统在边缘和核心区域传输物理研究的绝对电子温度和波动测量方面发挥着重要作用。F 波段接收器芯片(高达 140 GHz)正在开发中,用于具有更高环形磁场的其他聚变设施。可视化诊断提供等离子体分布演变的多尺度和多维数据。成像测量的一个重要方面是针对科学应用的人工智能。升级后的 ECEI 系统在边缘和核心区域传输物理研究的绝对电子温度和波动测量方面发挥着重要作用。目前正在开发一种F波段接收器芯片(高达140 GHz),用于具有更高环形磁场的其他融合设备。可视化诊断提供等离子体分布演变的多尺度和多维数据。成像测量的一个重要方面是专注于科学应用的人工智能。升级后的 ECEI 系统在边缘和核心区域传输物理研究的绝对电子温度和波动测量方面发挥着重要作用。F 波段接收器芯片(高达 140 GHz)正在开发中,用于具有更高环形磁场的其他聚变设施。可视化诊断提供等离子体分布演变的多尺度和多维数据。成像测量的一个重要方面是专注于科学应用的人工智能。
更新日期:2021-05-28
down
wechat
bug