当前位置: X-MOL 学术Acc. Mater. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic Chirality and a Materials Revolution
Accounts of Materials Research ( IF 14.6 ) Pub Date : 2021-05-27 , DOI: 10.1021/accountsmr.1c00059
Jihyeon Yeom 1
Affiliation  

Made available for a limited time for personal research and study only License. Figure 1. Chiral Co3O4 NPs. (A) Circular dichroism (CD). (B) g-factor, defined as the ratio between the molar circular dichroism Δε and the molar extinction coefficient ε (g = Δε/ε). (C) TEM image of l-Cys-capped Co3O4 NPs. (D) Raman optical activity (ROA) backscattering spectra with 532 nm excitation of d-Cys and l-Cys Co3O4 NPs in scattered circular polarization ROA mode. This spectrum is courtesy of BioTools. (E)–(G) Graphical representation of the dihedral angles formed by four atoms: f35–12–11–22 (red), f35–17–8–18 (blue), and f35–13–14–27 (green). (E) NP with ideal crystallographic structure. (F) NP with M-d-Cys after 2000 fs of MD simulation. (G) NP with P-l-Cys after 2000 fs of MD simulation. The direction from the S atom to the carbonyl atom in the Cys molecules is taken as the basis for the geometry classification according to the Cahn-Ingold-Prelog rules. Ligands have been omitted for clarity. (H) CD and MCD of l-Cys and d-Cys Co3O4 NPs. (I) Cycling profile of emission intensity at 415 nm with and without magnetic fields and corresponding photographs of blue-emitting light from the fluorescent paper. Reproduced with permission from ref (4). Copyright 2018, The American Association for the Advancement of Science. Figure 2. (A and B) HAADF STEM images of TGA-stabilized truncated tetrahedral CdTe NPs. Scale bars, 15 nm (A) and 5 nm (B). (C) High-resolution TEM image of TGA-stabilized truncated tetrahedral CdTe NPs. (D and F) Models of (D) chiral NPs and (F) chiral NP clusters used in calculations of the chiroptical properties. (E and G) Simulated spectra and g-factors for (E) L/R-NPs and (G) L/R-clusters of NPs. The nomenclature for NPs and their clusters is based on their positive (L) or negative (R) optical activity. (H) Fragment of the simulated self-assembled ribbon from a top view, showing the packing of NPs. (I and J) Side views of simulated NP ribbons with (I) LH and (J) RH truncated NPs. The dihedral angle θ determines the pitch of the nanoribbons. (K and L) SEM images of experimental assemblies spontaneously formed in the dark from chiral CdTe NPs stabilized by (K) l-cysteine (L) and d-cysteine. Scale bars, 1 μm. Reproduced with permission from ref (5). Copyright 2014, Nature Publishing Group. Figure 3. (A) Schematic drawing of photon-to-matter chirality transfer. (B and C) Electron tomography of Au nanostructures obtained after CPL illumination and their calculated CD spectra. Experimentally obtained tomographic reconstructions of (B) LH and (C) RH gold nanostructures. (D) Calculated CD spectra with geometry of the particle models imported directly from tomographic reconstructions (LH, black; RH, red). Reproduced with permission from ref (6). Copyright 2019 American Chemical Society. Figure 4. (A) Schematic illustration of chiral NPs’ self-assembly into SPs. (B) High-resolution transmission electron microscopy (TEM) image of l-SPs. (C) CD spectra of l-, d-, and dl-SPs and l-, d-, and dl-building block NPs. (D) Confocal images of HeLa cell nuclei (blue) and internalized d-, l-, and dl-SPs (red) (E) In vivo imaging system (IVIS) images of four groups of mice before and after intravenous injection of phosphate-buffered saline (PBS), l-, d-, and dl-SPs. (F) Number of chiral SPs remained in blood at various time points post injection. l-SPs showed the fastest decrease in signal in the blood. Reproduced with permission from ref (7). 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Jihyeon Yeom is an Assistant Professor at the Department of Materials Science and Engineering at Korea Advanced Institute of Science and Technology (KAIST). The Yeom lab is focusing on developing new chiral nanomaterials for next-generation bioanalysis and spectroscopic analysis creating Bio Big Data. She received her Ph.D. at the University of Michigan in 2017 where she researched chiral nanomaterials with Prof. Nicholas Kotov. She then conducted her postdoctoral research with Prof. Robert Langer at MIT. Her work at MIT focused on the design of chiral nanostructures for drug delivery and their chiral specific interactions with biological systems such as cellular membranes and proteins. During her career, she has been recognized with numerous awards including Charles G. Overberger Research Award (2016), Richard F. and Eleanor A. Towner Prize (2015), and Frank E. Filisko Research Award (2013). She also has been selected as a TJ Foundation POSCO Science Fellow in 2020 with her research on blood-based disease early diagnosis using novel chiral nano platforms. This article references 20 other publications.

中文翻译:

原子手性和材料革命

仅可在有限时间内用于个人研究和学习许可。图 1. 手性 Co 3 O 4 NP。(A) 圆二色性 (CD)。(B) g因子,定义为摩尔圆二色性 Δε 与摩尔消光系数 ε ( g = Δε/ε)之间的比率。(C) l -Cys 封端的 Co 3 O 4 NPs 的TEM 图像。(D) d -Cys 和l -Cys Co 3 O 4在 532 nm 激发下的拉曼光学活性 (ROA) 背向散射光谱散射圆偏振 ROA 模式下的 NP。该光谱由 BioTools 提供。(E)–(G) 由四个原子形成的二面角的图形表示:f35–12–11–22(红色)、f35–17–8–18(蓝色)和 f35–13–14–27(绿色) )。(E) 具有理想晶体结构的 NP。(F) 2000 fs MD 模拟后具有 M- d -Cys 的NP 。(G) 2000 fs MD 模拟后具有P- 1- Cys 的NP 。根据 Cahn-Ingold-Prelog 规则,以 Cys 分子中从 S 原子到羰基原子的方向作为几何分类的基础。为清楚起见省略了配体。(H) l -Cys 和d -Cys Co 3 O 4 的CD 和 MCDNP。(I) 有和没有磁场的 415 nm 发射强度的循环曲线和荧光纸发出的蓝色光的相应照片。经参考文献 (4) 许可转载。版权所有 2018,美国科学促进会。图 2.(A 和 B)TGA 稳定的截断四面体 CdTe NP 的 HAADF STEM 图像。比例尺,15 nm (A) 和 5 nm (B)。(C) TGA 稳定的截断四面体 CdTe NP 的高分辨率 TEM 图像。(D 和 F) 用于计算手性特性的 (D) 手性 NP 和 (F) 手性 NP 簇的模型。(E 和 G) (E) L/R-NPs 和 ( G ) L / R 的模拟光谱和g因子- NPs 集群。NP 及其簇的命名基于它们的正 (L) 或负 (R) 光学活性。( H ) 模拟自组装带的顶视图片段,显示了 NPs 的堆积。(I 和 J) 带有 (I) LH 和 (J) RH 截断 NP 的模拟 NP 带的侧视图。二面角 θ 决定了纳米带的间距。(K 和 L)由 (K) l -半胱氨酸 (L) 和d稳定的手性 CdTe NP 在黑暗中自发形成的实验组件的 SEM 图像-半胱氨酸。比例尺,1 μm。经参考文献 (5) 许可转载。版权所有 2014,自然出版集团。图 3. (A) 光子到物质手性转移的示意图。(B 和 C) CPL 照射后获得的 Au 纳米结构的电子断层扫描及其计算的 CD 光谱。通过实验获得 (B) LH 和 (C) RH 金纳米结构的断层扫描重建。(D) 计算的 CD 光谱与直接从断层扫描重建(LH,黑色;RH,红色)导入的粒子模型的几何形状。经参考文献 (6) 许可转载。版权所有 2019 美国化学学会。图 4. (A) 手性 NPs 自组装成 SPs 的示意图。(B) l -SPs的高分辨率透射电子显微镜 (TEM) 图像。(C) l - 的CD 谱,d - 和dl -SP 以及l -、d - 和dl -构建块 NP。(D)静脉注射磷酸盐前后四组小鼠的 HeLa 细胞核(蓝色)和内化d -、l - 和dl -SPs(红色)的共聚焦图像(E) 体内成像系统 (IVIS) 图像-缓冲盐水 (PBS)、l -、d - 和dl -SP。(F) 注射后不同时间点血液中保留的手性 SP 的数量。l -SPs在血液中显示出最快的信号下降。经参考文献 (7) 许可转载。2019 WILEY-VCH Verlag GmbH & Co. KGaA,魏因海姆。廉智贤是韩国先进科学技术研究院(KAIST)材料科学与工程系的助理教授。Yeom 实验室专注于开发新的手性纳米材料,用于创建生物大数据的下一代生物分析和光谱分析。她获得了博士学位。2017 年在密歇根大学与 Nicholas Kotov 教授一起研究手性纳米材料。随后,她与麻省理工学院的 Robert Langer 教授一起进行了博士后研究。她在麻省理工学院的工作重点是设计用于药物递送的手性纳米结构及其与生物系统(如细胞膜和蛋白质)的手性特异性相互作用。在她的职业生涯中,她获得了无数奖项,包括 Charles G. Overberger 研究奖(2016 年)、Richard F. 和 Eleanor A. Towner 奖(2015 年)、和 Frank E. Filisko 研究奖(2013 年)。她还在 2020 年被选为 TJ 基金会 POSCO 科学研究员,她使用新型手性纳米平台进行基于血液的疾病早期诊断的研究。本文引用了 20 篇其他出版物。
更新日期:2021-07-23
down
wechat
bug