当前位置: X-MOL 学术IEEE Trans. Elect. Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analytical Study on a 700 V Triple RESURF LDMOS With a Variable High-K Dielectric Trench
IEEE Transactions on Electron Devices ( IF 3.1 ) Pub Date : 2021-05-10 , DOI: 10.1109/ted.2021.3072870
Zhen Cao , Qian Wang , Licheng Jiao

A novel 700 V triple REduced SURface Field (RESURF) lateral double-diffused MOSFETs (LDMOS) with a variable high- ${K}$ (VHK) dielectric trench for smart power applications is proposed and studied by TCAD simulations. Compared with conventional triple RESURF (CTR) LDMOS, the new structure features a composite high- ${K}$ (HK) dielectric trench embedded in the drain edge. First, a higher HK dielectric layer is in the upper trench to suppress the high electric field ( ${E}$ -field) under the drain by dielectric RESURF. Second, a lower HK dielectric is at the bottom of the trench to promote the depletion of the ${N}$ -buffer layer and ${P}$ -substrate, which increases the ${N}$ -buffer doping concentration and thus reduces ON-resistance. The overall vertical bulk ${E}$ -field distribution is modulated by the ${E}$ -field peak generated at the position of varying ${K}$ dielectric, which greatly improves breakdown voltage (BV). An analytical model of BV and vertical ${E}$ -field taking account of the influence of the VHK dielectric trench is presented. Simulation results show that the proposed VHK TR LDMOS is able to obtain a 30.2% higher BV and a lower 15.4% ${R}_{ \mathrm{\scriptscriptstyle ON}, \text {sp}}$ than the CTR LDMOS. Moreover, the figure of merit (BV 2 / ${R}_{ \mathrm{\scriptscriptstyle ON}, \text {sp}}$ ) of VHK TR LDMOS has doubled further breaking the lateral silicon limit.

中文翻译:

高可变700 V三重RESURF LDMOS的分析研究ķ 介电沟槽

一种新颖的700 V三重减小SURface场(RESURF)横向双扩散MOSFET(LDMOS),具有可变的高 $ {K} $ 通过TCAD仿真,提出并研究了用于智能电源应用的(VHK)电介质沟槽。与传统的三重RESURF(CTR)LDMOS相比,新结构的特点是采用了 $ {K} $ (HK)介电沟槽嵌入漏极边缘。首先,较高的HK电介质层位于上部沟槽中,以抑制高电场( $ {E} $ 场)通过电介质RESURF在漏极下方。其次,较低的HK电介质位于沟槽的底部,以促进沟道的耗尽。 $ {N} $ -缓冲层和 $ {P} $ -底物,增加了 $ {N} $ -缓冲掺杂浓度,因此降低了导通电阻。整体垂直散装 $ {E} $ 场分布由 $ {E} $ 场峰值在变化的位置产生 $ {K} $ 电介质,可大大提高击穿电压(BV)。BV和垂直的分析模型 $ {E} $ 提出了考虑VHK介质沟槽影响的磁场。仿真结果表明,所提出的VHK TR LDMOS能够获得30.2%的较高BV和15.4%的较低BV。 $ {R} _ {\ mathrm {\ scriptscriptstyle ON},\ text {sp}} $ 比点击率LDMOS高。此外,品质因数(BV 2 / $ {R} _ {\ mathrm {\ scriptscriptstyle ON},\ text {sp}} $ VHK TR LDMOS的)已加倍,进一步突破了横向硅限制。
更新日期:2021-05-25
down
wechat
bug