当前位置: X-MOL 学术Tribol. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and Analytical Investigation of Fluid Drag Losses in Rolling Element Bearings
Tribology International ( IF 6.2 ) Pub Date : 2021-05-24 , DOI: 10.1016/j.triboint.2021.107106
Wyatt Peterson , Thomas Russell , Farshid Sadeghi , Michael Tekletsion Berhan

A Four Bearing Test Rig was designed and developed to measure frictional torque of oil lubricated rolling element bearings under various operating conditions. Deep groove ball bearings and radial needle roller bearings were tested for a range of speeds and lubricants. In this investigation, the portion of frictional torque caused by fluid drag losses was determined by analyzing the difference between a fully flooded (submerged) and a minimally lubricated bearing. Ansys Fluent computational fluid dynamics software was used to corroborate and model the different bearing geometries and operating conditions evaluated in the test rig. Drag force of bearing components was calculated from the CFD simulations and compared to the experimental results. The results demonstrate that they are in good agreement. Frictional torque due to fluid drag was further compared to an empirical friction model available in open literature. The CFD model provides a physics-based estimate of fluid drag which corroborates well with the experimental results, while the open literature empirical model tends to over-predict frictional torque from fluid drag. Experimental and analytical results from this investigation suggest that bearing cage design has a small impact on overall fluid drag losses, while substantial improvements can be made by optimizing lubrication conditions and bearing type. The presented CFD model provides an efficient approach to asses fluid drag losses for various bearing geometries and operating conditions.



中文翻译:

滚动轴承中流体阻力损失的实验和分析研究

四轴承试验台的设计和开发是为了测量油润滑滚动轴承在各种工作条件下的摩擦扭矩。深沟球轴承和径向滚针轴承经过了一系列速度和润滑剂的测试。在本次调查中,通过分析完全浸没(浸没)和最低限度润滑轴承之间的差异来确定由流体阻力损失引起的摩擦扭矩部分。Ansys Fluent 计算流体动力学软件用于验证和模拟测试台中评估的不同轴承几何形状和运行条件。根据 CFD 模拟计算轴承部件的阻力,并与实验结果进行比较。结果表明它们非常吻合。由流体阻力引起的摩擦扭矩进一步与公开文献中可用的经验摩擦模型进行比较。CFD模型提供了基于物理的流体阻力估计,这与实验结果很好地吻合,而开放文献的经验模型往往会过度预测流体阻力的摩擦扭矩。这项研究的实验和分析结果表明,轴承保持架的设计对整体流体阻力损失的影响很小,而通过优化润滑条件和轴承类型可以进行重大改进。所提出的 CFD 模型提供了一种有效的方法来评估各种轴承几何形状和操作条件下的流体阻力损失。CFD模型提供了基于物理的流体阻力估计,这与实验结果很好地吻合,而开放文献的经验模型往往会过度预测流体阻力的摩擦扭矩。这项研究的实验和分析结果表明,轴承保持架的设计对整体流体阻力损失的影响很小,而通过优化润滑条件和轴承类型可以进行重大改进。所提出的 CFD 模型提供了一种有效的方法来评估各种轴承几何形状和操作条件下的流体阻力损失。CFD模型提供了基于物理的流体阻力估计,这与实验结果很好地吻合,而开放文献的经验模型往往会过度预测流体阻力的摩擦扭矩。这项研究的实验和分析结果表明,轴承保持架的设计对整体流体阻力损失的影响很小,而通过优化润滑条件和轴承类型可以进行重大改进。所提出的 CFD 模型提供了一种有效的方法来评估各种轴承几何形状和操作条件下的流体阻力损失。这项研究的实验和分析结果表明,轴承保持架的设计对整体流体阻力损失的影响很小,而通过优化润滑条件和轴承类型可以进行重大改进。所提出的 CFD 模型提供了一种有效的方法来评估各种轴承几何形状和操作条件下的流体阻力损失。这项研究的实验和分析结果表明,轴承保持架的设计对整体流体阻力损失的影响很小,而通过优化润滑条件和轴承类型可以进行重大改进。所提出的 CFD 模型提供了一种有效的方法来评估各种轴承几何形状和操作条件下的流体阻力损失。

更新日期:2021-05-28
down
wechat
bug