当前位置: X-MOL 学术Remote Sens. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The PRISMA imaging spectroscopy mission: overview and first performance analysis
Remote Sensing of Environment ( IF 13.5 ) Pub Date : 2021-05-21 , DOI: 10.1016/j.rse.2021.112499
S. Cogliati , F. Sarti , L. Chiarantini , M. Cosi , R. Lorusso , E. Lopinto , F. Miglietta , L. Genesio , L. Guanter , A. Damm , S. Pérez-López , D. Scheffler , G. Tagliabue , C. Panigada , U. Rascher , T.P.F. Dowling , C. Giardino , R. Colombo

The PRISMA satellite mission launched on March 22nd, 2019 is one of the latest spaceborne imaging spectroscopy mission for Earth Observation. The PRISMA satellite comprises a high-spectral resolution VNIR-SWIR imaging spectrometer and a panchromatic camera. In summer 2019, first operations during the commissioning phase were mainly devoted to acquisitions in specific areas for evaluating instrument functioning, in-flight performance, and mission data product accuracy. A field and airborne campaign was carried out over an agriculture area in Italy to collect in-situ multi-source spectroscopy measurements at different scales simultaneously with PRISMA. The spectral, radiometric and spatial performance of PRISMA Level 1 Top-Of-Atmosphere radiance (LTOA) product were analyzed. The in-situ surface reflectance measurements over different landcovers were propagated to LTOA using MODTRAN5 radiative transfer simulations and compared with satellite observations. Overall, this work offers a first quantitative evaluation about the PRISMA mission performance and imaging spectroscopy LTOA data product consistency. Our results show that the spectral smile is less than 5 nm, the average spectral resolution is 13 nm and 11 nm (VNIR and SWIR respectively) and it varies ±2 nm across track. The radiometric comparison between PRISMA and field/airborne spectroscopy shows a difference lower than 5% for NIR and SWIR, whereas it is included in the 2–7% range in the VIS. The estimated instrument signal to noise ratio (SNR) is ≈400–500 in the NIR and part of the SWIR (<1300 nm), lower SNR values were found at shorter (<700 nm) and longer wavelengths (>1600 nm). The VNIR-to-SWIR spatial co-registration error is below 8 m and the spatial resolution is 37.11 m and 38.38 m for VNIR and SWIR respectively. The results are in-line with the expectations and mission requirements and indicate that acquired images are suitable for further scientific applications. However, this first assessment is based on data from a rural area and this cannot be fully exhaustive. Further studies are needed to confirm the performance for other land cover types like snow, inland and coastal waters, deserts or urban areas.



中文翻译:

PRISMA成像光谱任务:概述和首次性能分析

PRISMA 3月22日推出的卫星使命ND 2019年,是地球观测最新的星载成像光谱仪的任务之一。PRISMA卫星包括一个高光谱分辨率的VNIR-SWIR成像光谱仪和一个全色相机。在2019年夏季,调试阶段的首次运营主要致力于特定领域的采购,以评估仪器的功能,飞行中的性能以及任务数据产品的准确性。在意大利的一个农业地区开展了一次野战和空降战役,与PRISMA同时收集了不同规模的现场多源光谱测量数据。PRISMA 1级大气最高辐射(L TOA)的光谱,辐射度和空间性能)产品进行了分析。使用MODTRAN5辐射传输模拟将不同土地覆盖物的原地表面反射率测量结果传播到L TOA,并与卫星观测结果进行比较。总体而言,这项工作提供了有关PRISMA任务性能和成像光谱的首次定量评估L TOA数据产品的一致性。我们的结果表明,光谱微笑度小于5 nm,平均光谱分辨率为13 nm和11 nm(分别为VNIR和SWIR),并且在整个轨道上变化±2 nm。PRISMA与现场/机载光谱学之间的辐射比较表明,NIR和SWIR的差异小于5%,而VIS的2–7%范围内。在NIR和部分SWIR(<1300 nm)中,估计的仪器信噪比(SNR)约为400-500,在较短的波长(<700 nm)和较长的波长(> 1600 nm)中发现较低的SNR值。VNIR到SWIR的空间共配准误差在8 m以下,VNIR和SWIR的空间分辨率分别为37.11 m和38.38 m。结果符合预期和任务要求,表明所采集的图像适合于进一步的科学应用。但是,第一次评估是基于农村地区的数据,因此不能完全详尽。需要进一步的研究来确认其他土地覆盖类型的性能,例如雪,内陆和沿海水域,沙漠或城市地区。

更新日期:2021-05-22
down
wechat
bug