当前位置: X-MOL 学术IEEE Trans. Nucl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating Heavy-Ion Effects on 14-nm Process FinFETs: Displacement Damage Versus Total Ionizing Dose
IEEE Transactions on Nuclear Science ( IF 1.8 ) Pub Date : 2021-04-13 , DOI: 10.1109/tns.2021.3072886
Madeline G. Esposito , Jack E. Manuel , Aymeric Privat , T. Patrick Xiao , Diana Garland , Edward Bielejec , Gyorgy Vizkelethy , Jeramy Dickerson , John Brunhaver , A. Alec Talin , David Ashby , Michael P. King , Hugh Barnaby , Michael Mclain , Matthew J. Marinella

Bulk 14-nm FinFET technology was irradiated in a heavy-ion environment (42-MeV Si ions) to study the possibility of displacement damage (DD) in scaled technology devices, resulting in drive current degradation with increased cumulative fluence. These devices were also exposed to an electron beam, proton beam, and cobalt-60 source (gamma radiation) to further elucidate the physics of the device response. Annealing measurements show minimal to no “rebound” in the ON-state current back to its initial high value; however, the OFF-state current “rebound” was significant for gamma radiation environments. Low-temperature experiments of the heavy-ion-irradiated devices reveal increased defect concentration as the result for mobility degradation with increased fluence. Furthermore, the subthreshold slope (SS) temperature dependence uncovers a possible mechanism of increased defect bulk traps contributing to tunneling at low temperatures. Simulation work in Silvaco technology computer-aided design (TCAD) suggests that the increased OFF-state current is a total ionizing dose (TID) effect due to oxide traps in the shallow trench isolation (STI). The significant SS elongation and ON-state current degradation could only be produced when bulk traps in the channel were added. Heavy-ion irradiation on bulk 14-nm FinFETs was found to be a combination of TID and DD effects.

中文翻译:

研究14纳米工艺FinFET上的重离子效应:位移损伤与总电离剂量

在重离子环境(42 MeV Si离子)中辐照了14纳米FinFET技术,以研究按比例缩放的技术设备中位移损坏(DD)的可能性,从而导致驱动电流下降,累积通量增加。这些设备还暴露于电子束,质子束和钴60源(伽马辐射)中,以进一步阐明设备响应的物理原理。退火测量显示,导通状态电流恢复到其初始高值时,回弹极小或没有回弹。但是,关闭状态的电流“回弹”对于伽马辐射环境非常重要。重离子辐照器件的低温实验表明,缺陷浓度增加,这是由于迁移率降低导致迁移率降低的结果。此外,亚阈值斜率(SS)对温度的依赖性揭示了缺陷体陷阱增加的可能机制,这有助于在低温下隧穿。Silvaco技术计算机辅助设计(TCAD)中的仿真工作表明,由于浅沟槽隔离(STI)中的氧化物陷阱,增加的截止状态电流是总电离剂量(TID)效应。仅当在通道中添加体阱时,才会产生明显的SS伸长和导通状态电流降级。发现在14nm大块FinFET上进行重离子辐照是TID和DD效应的结合。Silvaco技术计算机辅助设计(TCAD)中的仿真工作表明,由于浅沟槽隔离(STI)中的氧化物陷阱,增加的截止状态电流是总电离剂量(TID)效应。仅当在通道中添加体阱时,才会产生明显的SS伸长和导通状态电流降级。发现在14nm大块FinFET上进行重离子辐照是TID和DD效应的结合。Silvaco技术计算机辅助设计(TCAD)中的仿真工作表明,由于浅沟槽隔离(STI)中的氧化物陷阱,增加的截止状态电流是总电离剂量(TID)效应。仅当在通道中添加体阱时,才会产生明显的SS伸长和导通状态电流降级。发现在14nm大块FinFET上进行重离子辐照是TID和DD效应的结合。
更新日期:2021-05-22
down
wechat
bug