当前位置: X-MOL 学术IEEE Trans. Nucl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiscale System Modeling of Single-Event-Induced Faults in Advanced Node Processors
IEEE Transactions on Nuclear Science ( IF 1.8 ) Pub Date : 2021-05-05 , DOI: 10.1109/tns.2021.3071653
Matthew Cannon , Arun Rodrigues , Dolores Black , Jeff Black , Luis Bustamante , Matthew Breeding , Ben Feinberg , Micahel Skoufis , Heather Quinn , Lawrence T. Clark , John Brunhaver , Hugh Barnaby , Michael McLain , Sapan Agarwal , Matthew J. Marinella

Integration-technology feature shrink increases computing-system susceptibility to single-event effects (SEE). While modeling SEE faults will be critical, an integrated processor’s scope makes physically correct modeling computationally intractable. Without useful models, presilicon evaluation of fault-tolerance approaches becomes impossible. To incorporate accurate transistor-level effects at a system scope, we present a multiscale simulation framework. Charge collection at the 1) device level determines 2) circuit-level transient duration and state-upset likelihood. Circuit effects, in turn, impact 3) register-transfer-level architecture-state corruption visible at 4) the system level. Thus, the physically accurate effects of SEEs in large-scale systems, executed on a high-performance computing (HPC) simulator, could be used to drive cross-layer radiation hardening by design. We demonstrate the capabilities of this model with two case studies. First, we determine a D flip-flop’s sensitivity at the transistor level on 14-nm FinFet technology, validating the model against published cross sections. Second, we track and estimate faults in a microprocessor without interlocked pipelined stages (MIPS) processor for Adams 90% worst case environment in an isotropic space environment.

中文翻译:

高级节点处理器中单事件引发的故障的多尺度系统建模

集成技术功能的缩减增加了计算系统对单事件效果(SEE)的敏感性。尽管对SEE故障进行建模非常关键,但集成处理器的范围使物理上正确的建模在计算上难以实现。如果没有有用的模型,就无法对容错方法进行硅前评估。为了在系统范围内纳入准确的晶体管级效应,我们提出了一种多尺度仿真框架。1)设备级别的电荷收集确定2)电路级别的瞬态持续时间和状态异常可能性。电路效应反过来会影响3)寄存器传输级别的体系结构状态损坏,在4)系统级别可见。因此,在高性能计算(HPC)仿真器上执行的大型系统中SEE的物理精确效果,通过设计可用于驱动跨层辐射硬化。我们通过两个案例研究证明了该模型的功能。首先,我们在14纳米FinFet技术上确定晶体管级D触发器的灵敏度,并根据发布的横截面验证模型。其次,我们针对各向同性空间环境中90%的最坏情况下的Adams情况,在没有互锁流水线级(MIPS)处理器的微处理器中跟踪和估计故障。
更新日期:2021-05-22
down
wechat
bug