当前位置: X-MOL 学术Stem Cells Transl. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A preview of selected articles
STEM CELLS Translational Medicine ( IF 6 ) Pub Date : 2021-05-19 , DOI: 10.1002/sctm.21-0133
Stuart P. Atkinson 1
Affiliation  

Extracellular vesicles (EVs) comprise a heterogeneous group of lipid bilayer-delimited particles released from most, if not all, cells that play crucial roles in cell-to-cell communication through the transport of cargos that include various RNA species (including microRNAs), proteins, lipids, and DNA. Diverse populations of EVs display significant differences in size, morphology, composition, and/or biological mechanisms depending on their cell type of origin and associated physiological status. The interaction of EVs with target cells induces various effects, such as the stimulation of specific signaling pathways or the provision of trophic support,1 and a range of studies have also established the crucial role of secreted EVs in the success of cell-based therapies; therefore, they may represent a safe and effective cell-free approach to the treatment of various diseases and disorders.2, 3 A vast range of stem and somatic cell types secrete elevated amounts of EVs, and current research aims in this field include the development of clinically-relevant isolation methods and the delineation of strategies to further enhance any inherent therapeutic potential. In our first Featured Article published this month in STEM CELLS Translational Medicine, Cardoso et al describe an optimized approach to the scalable and clinically-compatible manufacture of EVs from umbilical cord blood mononuclear cells that significantly accelerate wound healing.4 In a Related Article published recently in STEM CELLS, Harting et al reported on the therapeutic capacities of mesenchymal stem cell (MSC)-derived EVs following inflammatory stimulation in a study that aimed to create a foundation for the enhanced treatment of inflammatory injuries and diseases.5

Cells of the innate immune system known as innate lymphoid cells (or ILCs) play crucial regulatory functions in immune responses to commensal microorganisms and pathogens at mucosal barriers, tissue inflammation, and adaptive immunity through the production of effector cytokines in response to a range of stimuli.6 ILCs are currently categorized into three main groups—ILC1s, ILC2s, and ILC3s7—that each possess unique developmental, phenotypic, and functional characteristics while displaying broad similarities to T cell subsets (Th1, Th2, and Th17, respectively). In general, studies have underscored the importance of the proper function of tissue-resident ILCs to tissue homeostasis, morphogenesis, metabolism, repair, and regeneration7; however, ILC dysfunction has been established in inflammatory diseases such as inflammatory bowel disease, rheumatoid arthritis, asthma, atopic dermatitis, and multiple sclerosis. Current research aims in the relatively young ILC field include defining the differences between circulating and tissue-resident ILCs and neonatal and adult ILCs and exploring the role of ILCs (specifically ILC2s8) in stem cell-based immunomodulatory therapies for inflammatory diseases. In our second Featured Article published this month in STEM CELLS Translational Medicine, Bennstein et al report the unique identity of cord blood-derived circulating ILCs compared to adult circulating and tissue-resident ILCs in a study that could significantly improve our understanding of neonatal innate immunity.9 In a Related Article published recently in STEM CELLS, Fan et al demonstrated that induced pluripotent stem cell-derived MSCs (iPSC-MSCs) inhibited ILC2 function with the assistance of regulatory T cells through the inducible costimulator (ICOS)-ICOS ligand (ICOSL) signaling pathway.10



中文翻译:

所选文章的预览

细胞外囊泡(EV)包含一组异质的脂质双层分隔的颗粒,这些颗粒从大多数(如果不是全部)细胞中释放出来,这些细胞通过包含多种RNA物种(包括microRNA)的货物运输在细胞间通信中起着至关重要的作用,蛋白质,脂质和DNA。不同的电动汽车群体在大小,形态,组成和/或生物学机制上均表现出显着差异,具体取决于其来源的细胞类型和相关的生理状态。电动汽车与靶细胞的相互作用可诱导多种作用,例如刺激特定的信号通路或提供营养支持,1一系列研究还确定了分泌型电动汽车在基于细胞的疗法成功中的关键作用;因此,它们可能代表一种安全有效的无细胞方法来治疗各种疾病和病症。[2,3]大量的干细胞和体细胞类型分泌高水平的电动汽车,目前该领域的研究目标包括开发与临床相关的分离方法以及确定进一步增强任何内在治疗潜力的策略。在本月发表于《STEM细胞转化医学》上的第一篇精选文章中,Cardoso等人描述了一种可优化的方法,用于从脐带血单核细胞可扩展且临床兼容的电动汽车生产中,该电动汽车可显着加速伤口愈合。4在最近发表于STEM CELLS的相关文章中,Harting等人报道了炎症刺激后间充质干细胞(MSC)衍生的EV的治疗能力,该研究旨在为增强治疗炎症性损伤和疾病奠定基础。5

先天免疫系统的细胞被称为先天淋巴样细胞(或ILC),在黏膜屏障,组织炎症和对一系列刺激反应产生效应细胞因子的适应性免疫中,对共生微生物和病原体的免疫反应中起着至关重要的调节作用。 。6 ILC目前分为三大类-ILC1,ILC2和ILC3 7,它们各自具有独特的发育,表型和功能特征,同时与T细胞亚群(分别为Th1,Th2和Th17)表现出广泛的相似性。一般而言,研究强调了驻留组织的ILC对组织稳态,形态发生,代谢,修复和再生的适当功能的重要性7; 然而,在炎症性疾病如炎症性肠病,类风湿性关节炎,哮喘,特应性皮炎和多发性硬化症中已经建立了ILC功能障碍。当前在相对年轻的ILC领域的研究目标包括确定循环ILC和组织驻留ILC与新生儿ILC和成人ILC之间的差异,并探索ILC(特别是ILC2 8)在基于干细胞的炎性疾病免疫调节疗法中的作用。在本月发表于《STEM CELLS转化医学》上的第二篇精选文章中,Bennstein等人报告了一项脐带血循环ILC与成人循环ILC和组织驻留ILC相比的独特身份,这项研究可以显着提高我们对新生儿先天免疫力的了解。9在最近发表于STEM CELLS的相关文章中,Fan等人证明了诱导多能干细胞衍生的MSC(iPSC-MSC)通过可诱导的共刺激物(ICOS)-ICOS配体(ICOSL)在调节性T细胞的辅助下抑制ILC2功能。 )信号通路。10

更新日期:2021-05-20
down
wechat
bug