当前位置: X-MOL 学术Microfluid. Nanofluid. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Portable microfluidic platform employing Young–Laplace pumping enabling flowrate controlled applications
Microfluidics and Nanofluidics ( IF 2.8 ) Pub Date : 2021-05-20 , DOI: 10.1007/s10404-021-02449-4
Leonard Mahlberg , Matthias Hermann , Hannah Ramsay , Timothy Salomons , Kevin Stamplecoskie , Richard D. Oleschuk

Facile, customizable platforms are important for a variety of microfluidic applications. This work presents a platform that utilizes surface tension induced pumping based on Young–Laplace pressure. The approach allows modifiable transport of fluids across surfaces without external pumping modules. The Laplace-chip is based on a superhydrophobic coating (NeverWet™) that is patterned by laser micromachining. For fast and consistent deposition of specific liquid volumes/droplets onto the “Laplace-chip” without the need for conventional fluid dispensing tools (e.g. pipette), a multiplexed droplet factory (MDF) was developed. The MDF is placed above the Laplace-chip and consists of cylindrial reservoirs that are filled by a “pour and swipe” approach. It enables the formation of hundreds of droplets (10–140 µL, 7.3% deviation) with both position and volume control as well as the simultaneous initiation of Young–Laplace induced pumping on the Laplace-chip. Furthermore, the flowrate of Young–Laplace induced pumping is adjustable through different pattern designs and dispensed droplet volumes. The Laplace-chip and MDF is used to carry out silver nanoparticle and nanocluster synthesis, where the reagent introduction rate is critical to material properties, to demonstrate flowrate controlled application possibilities. A Laplace-chip employing different channel length is employed to carry out the reduction of Ag+ to Ag0, using NaBH4. Low reducing agent concentrations and long pumping times (40–60 min) resulted in molecule-like silver cluster (AgNC) synthesis, while high reducing agent concentrations and short pumping times (5–20 min) led to the synthesis of silver nanoparticles (AgNPs).



中文翻译:

便携式微流体平台采用Young-Laplace泵,可实现流量受控的应用

便捷的,可定制的平台对于各种微流体应用都很重要。这项工作提出了一个平台,该平台利用了基于Young-Laplace压力的表面张力引起的泵送作用。该方法允许在没有外部泵送模块的情况下跨表面可修改地输送流体。拉普拉斯芯片基于超疏水涂层(NeverWet™),该涂层通过激光微加工形成图案。为了在不使用常规流体分配工具(例如移液器)的情况下将特定的液体体积/小滴快速一致地沉积到“拉普拉斯芯片”上,开发了多路液滴工厂(MDF)。MDF放置在Laplace芯片上方,由圆柱状储罐组成,这些储罐通过“倾倒和滑动”方法填充。它可以形成数百个液滴(10–140 µL,7。位置和体积控制,以及在拉普拉斯芯片上同时启动Young-Laplace感应泵浦的3%偏差)。此外,Young-Laplace感应泵的流量可通过不同的模式设计和分配的墨滴量进行调节。拉普拉斯芯片和中密度纤维板用于进行银纳米颗粒和纳米簇的合成,其中试剂的引入速率对材料性能至关重要,以证明流速受控的应用可能性。采用采用不同沟道长度的拉普拉斯芯片进行银的还原 拉普拉斯芯片和中密度纤维板用于进行银纳米颗粒和纳米簇的合成,其中试剂的引入速率对材料性能至关重要,以证明流速受控的应用可能性。采用采用不同沟道长度的拉普拉斯芯片进行银的还原 拉普拉斯芯片和中密度纤维板用于进行银纳米颗粒和纳米簇的合成,其中试剂的引入速率对材料性能至关重要,以证明流速受控的应用可能性。采用采用不同沟道长度的拉普拉斯芯片进行银的还原用NaBH 4 +到Ag 0。低还原剂浓度和长泵送时间(40-60分钟)导致了分子状的银团簇(AgNC)的合成,而高还原剂浓度和短泵送时间(5-20​​分钟)导致了银纳米颗粒(AgNPs)的合成)。

更新日期:2021-05-20
down
wechat
bug